• 제목/요약/키워드: Software-defined radio

Search Result 179, Processing Time 0.038 seconds

SDR Software Download and Reconfiguration Technique (SDR 소프트웨어 다운로드와 재구성 기법)

  • Seo, Young-Jin;Jeong, Sang-Kook;Kim, Han-Kyoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11b
    • /
    • pp.891-894
    • /
    • 2003
  • 본 논문에서는 다양한 이동 통신 서비스에 대한 호환성을 지원하는 기술인 소프트웨어에 의한 단말기 형상의 재구성을 가능하게 하는 Software Defined Radio(SDR)에 대한 내용을 기술한다. SDR의 핵심기술 중 하나인 소프트웨어 다운로드에 대해 소개하고 이와 관련된 재구성에 대해 서술해 보기로 한다.

  • PDF

A Multithreaded Processor Architecture for SDR

  • Glossner, John;Raja, Tanuj;Hokenek, Erdem;Moudgill, Mayan
    • Information and Communications Magazine
    • /
    • v.19 no.11
    • /
    • pp.70-84
    • /
    • 2002
  • In this paper we discuss a multi-threaded baseband Processor capable of executing all physical layer processing of high data rate communications systems completely in software. We discuss the enabling technology for a software defined radio approach and present results for GPRS. 802.11b, and 2Mbps WCDMA. All of these protocols can be executed in real-time on the SB9600 chip using the Sandblaster core.

A Study on Improving Performance of the Network Transport by Interworking Different Protocols (다종 프로토콜 네트워크에서의 연동성 제공을 통한 전달 성능 향상에 관한 연구)

  • Lee, Kyou-Ho;Song, Sang-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.60-66
    • /
    • 2009
  • A service network in the future ubiquitous environment can consist of a variety of elements, which include different protocols of the network transport. Interwoking different transport protocols can alleviate such problems occurred in accessing network as poverty of facilities, faults, and contention in a path of particular protocol communication. This paper schemes to improve performance of the network constituted of different protocols for the network transport. Interposing an interwork element, like SDR (Software Defined Radio), in the network can raise availability of transport paths, and then improve transport performance of the overall network Simulation analysis justifies such a scheme and this paper presents simulation results.

MARS: Multiple Access Radio Scheduling for a Multi-homed Mobile Device in Soft-RAN

  • Sun, Guolin;Eng, Kongmaing;Yin, Seng;Liu, Guisong;Min, Geyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.79-95
    • /
    • 2016
  • In order to improve the Quality-of-Service (QoS) of latency sensitive applications in next-generation cellular networks, multi-path is adopted to transmit packet stream in real-time to achieve high-quality video transmission in heterogeneous wireless networks. However, multi-path also introduces two important challenges: out-of-order issue and reordering delay. In this paper, we propose a new architecture based on Software Defined Network (SDN) for flow aggregation and flow splitting, and then design a Multiple Access Radio Scheduling (MARS) scheme based on relative Round-Trip Time (RTT) measurement. The QoS metrics including end-to-end delay, throughput and the packet out-of-order problem at the receiver have been investigated using the extensive simulation experiments. The performance results show that this SDN architecture coupled with the proposed MARS scheme can reduce the end-to-end delay and the reordering delay time caused by packet out-of-order as well as achieve a better throughput than the existing SMOS and Round-Robin algorithms.

Sampling Jitter Effect on a Reconfigurable Digital IF Transceiver to WiMAX and HSDPA

  • Yu, Bong-Guk;Lee, Jae-Kwon;Kim, Jin-Up;Lim, Kyu-Tae
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.326-334
    • /
    • 2011
  • This paper outlines the time jitter effect of a sampling clock on a software-defined radio technology-based digital intermediate frequency (IF) transceiver for a mobile communication base station. The implemented digital IF transceiver is reconfigurable to high-speed data packet access (HSDPA) and three bandwidth profiles: 1.75 MHz, 3.5 MHz, and 7 MHz, each incorporating the IEEE 802.16d worldwide interoperability for microwave access (WiMAX) standard. This paper examines the relationship between the signal-to-noise ratio (SNR) characteristics of a digital IF transceiver with an under-sampling scheme and the sampling jitter effect on a multichannel orthogonal frequency-division multiplexing (OFDM) signal. The simulation and experimental results show that the SNR of the OFDM system with narrower band profiles is more susceptible to sampling clock jitter than systems with relatively wider band profiles. Further, for systems with a comparable bandwidth, HSDPA outperforms WiMAX, for example, a 5 dB error vector magnitude improvement at 15 picoseconds time jitter for a bandwidth of WiMAX 3.5 MHz profile.

Implementation of GPU System for SDR in WiBro Environment (WiBro 환경에서 SDR을 위한 GPU 시스템 구현)

  • Ahn, Sung-Soo;Lee, Jung-Suk
    • 전자공학회논문지 IE
    • /
    • v.48 no.3
    • /
    • pp.20-25
    • /
    • 2011
  • We developed a method of accelerating the operation speed of communication systems for SDR(Software Defined Radio) systems in WiBro environment. In this paper, we propose a new scheme of using GPU(Graphics Processing Unit) for implementing the communication system which perform with the functionality of SDR. In general, communication systems is made by DSP(Digital Signalling Processor) or FPGA(Field Programmable Gate Array). However, in this case, there are exist the problem of implementation and debugging caused by each CPU characteristic. The GPU is optimized for vector processing because it usually consists of multiple processors and each processor in GPU is composed of a set of threads. We also developed Framework to use GPU and CPU resources effectively for reducing the operation time. From the various simulation, it is confirmed that GPU system have good performance in WiBro system.

Complex Bandpass Sampling Technique and Its Generalized Formulae for SDR System (SDR 시스템을 위한 Complex Bandpass Sampling 기법 및 일반화 공식의 유도)

  • Bae, Jung-Hwa;Ha, Won;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.687-695
    • /
    • 2005
  • A bandpass sampling technique, which is a method directly downconverting a bandpass signal to a baseband or a low IF signal without analog mixers, can be an alterative choice for the SDR system to minimize the RF front-end. In this paper, a complex bandpass sampling technique for two bandpass-filtered signals is proposed. We derived generalized formulae for the available sampling range, the signal's IF and the minimum sampling frequency taking into consideration the guard-bands for the multiple RE signals. Thru the simulation experiments, the advantages of the . complex bandpass sampling over the pre-reported real bandpass sampling are investigated for applications in the SDR design.

Agile Management and Interoperability Testing of SDN/NFV-Enriched 5G Core Networks

  • Choi, Taesang;Kim, TaeYeon;Tavernier, Wouter;Korvala, Aki;Pajunpaa, Jussi
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.72-88
    • /
    • 2018
  • In the fifth generation (5G) era, the radio internet protocol capacity is expected to reach 20 Gb/s per sector, and ultralarge content traffic will travel across a faster wireless/wireline access network and packet core network. Moreover, the massive and mission-critical Internet of Things is the main differentiator of 5G services. These types of real-time and large-bandwidth-consuming services require a radio latency of less than 1 ms and an end-to-end latency of less than a few milliseconds. By distributing 5G core nodes closer to cell sites, the backhaul traffic volume and latency can be significantly reduced by having mobile devices download content immediately from a closer content server. In this paper, we propose a novel solution based on software-defined network and network function virtualization technologies in order to achieve agile management of 5G core network functionalities with a proof-of-concept implementation targeted for the PyeongChang Winter Olympics and describe the results of interoperability testing experiences between two core networks.

A D2D communication architecture under full control using SDN

  • Ngo, Thanh-Hai;Kim, Younghan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3435-3454
    • /
    • 2016
  • Device-to-device (D2D) communication is a potential solution to the incessant increase in data traffic on cellular networks. The greatest problem is how to control the interference between D2D users and cellular mobile users, and between D2D users themselves. This paper proposes a solution for this issue by putting the full control privilege in cellular network using the software-defined networking (SDN) concept. A software virtual switch called Open vSwitch and several components are integrated into mobile devices for data forwarding and radio resource mapping, whereas the control functions are executed in the cellular network via a SDN controller. This allows the network to assign radio resources for D2D communication directly, thus reducing interference. This solution also brings out many benefits, including resource efficiency, energy saving, topology flexibility, etc. The advantages and disadvantages of this architecture are analyzed by both a mathematical method and a simple implementation. The result shows that implementation of this solution in the next generation of cellular networks is feasible.

Implementation of Digital Broadcasting Modulation / Demodulation system using Software-Defined Radio (소프트웨어 정의 라디오를 이용한 디지털 방송 송수신 시스템 구현)

  • Ryu, Yeongbin;Lee, Hyun;Kim, Jaeyoon;Park, Changmin;Ji, Younggun;Oh, Hyukjun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.596-600
    • /
    • 2020
  • 본 논문에서는 Xilinx 사(社)의 Spartan-6 FPGA 와 Analog Devices 社의 Transceiver 칩인 AD9361 을 이용한 소프트웨어 정의 라디오 장비인 Universal Software Radio Peripheral(USRP) B210 를 이용하여 디지털 방송 표준인 ATSC 의 실시간 영상 송수신 시스템을 신호 처리 소프트웨어인 그누 라디오로 구현하였다. ATSC 에서 사용하는 MPEG 트랜스포트 스트림 영상 신호가 송신부에서 소프트웨어로 디지털 신호 처리되고 Digital-to-Analog Conversion(DAC) 과정을 거쳐 영상 신호가 송출된다. 본 논문은 디지털 방송 수신부에서 핵심 기능을 하는 등화기 알고리즘을 소프트웨어를 통해 구현하여 신호의 왜곡을 보상하는 방법을 제안한다. 수신부에서는 신호를 수신하여 튜너, 매치 필터, 위상 고정루프, 등화기, 비터비 복호 알고리즘 등의 과정을 거쳐 수신한 후 영상을 확인하였다.

  • PDF