• Title/Summary/Keyword: Software parallelization

Search Result 35, Processing Time 0.026 seconds

Parallelization of Feature Detection and Panorama Image Generation using OpenCL and Embedded GPU (OpenCL 및 Embedded GPU를 이용한 영상 특징 추출 및 파노라마 영상 생성의 병렬화)

  • Kang, Seung Heon;Lee, Seung-Jae;Lee, Man Hee;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.316-328
    • /
    • 2014
  • In this paper, we parallelize the popular feature detection algorithms, i.e. SIFT and SURF, and its application to fast panoramic image generation on the latest embedded GPU. Parallelized algorithms are implemented using recently developed OpenCL as the embedded GPGPU software platform. We compare the implementation efficiency and speed performance of conventional OpenGL Shading Language and OpenCL. Experimental result shows that implementation on OpenCL has comparable performance with GLSL. Compared with the performance on the embedded CPU in the same application processor, the embedded GPU runs 3~4 times faster. As an example of using feature extraction, panorama image synthesis is performed on embedded GPU by applying image matching using detected features.

Fast CU Encoding Schemes Based on Merge Mode and Motion Estimation for HEVC Inter Prediction

  • Wu, Jinfu;Guo, Baolong;Hou, Jie;Yan, Yunyi;Jiang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1195-1211
    • /
    • 2016
  • The emerging video coding standard High Efficiency Video Coding (HEVC) has shown almost 40% bit-rate reduction over the state-of-the-art Advanced Video Coding (AVC) standard but at about 40% computational complexity overhead. The main reason for HEVC computational complexity is the inter prediction that accounts for 60%-70% of the whole encoding time. In this paper, we propose several fast coding unit (CU) encoding schemes based on the Merge mode and motion estimation information to reduce the computational complexity caused by the HEVC inter prediction. Firstly, an early Merge mode decision method based on motion estimation (EMD) is proposed for each CU size. Then, a Merge mode based early termination method (MET) is developed to determine the CU size at an early stage. To provide a better balance between computational complexity and coding efficiency, several fast CU encoding schemes are surveyed according to the rate-distortion-complexity characteristics of EMD and MET methods as a function of CU sizes. These fast CU encoding schemes can be seamlessly incorporated in the existing control structures of the HEVC encoder without limiting its potential parallelization and hardware acceleration. Experimental results demonstrate that the proposed schemes achieve 19%-46% computational complexity reduction over the HEVC test model reference software, HM 16.4, at a cost of 0.2%-2.4% bit-rate increases under the random access coding configuration. The respective values under the low-delay B coding configuration are 17%-43% and 0.1%-1.2%.

Multi-Dimensional Record Scan with SIMD Vector Instructions (SIMD 벡터 명령어를 이용한 다차원 레코드 스캔)

  • Cho, Sung-Ryong;Han, Hwan-Soo;Lee, Sang-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.732-736
    • /
    • 2010
  • Processing a large amount of data becomes more important than ever. Particularly, the information queries which require multi-dimensional record scan can be efficiently implemented with SIMD instruction sets. In this article, we present a SIMD record scan technique which employs row-based scanning. Our technique is different from existing SIMD techniques for predicate processes and aggregate operations. Those techniques apply SIMD instructions to the attributes in the same column of the database, exploiting the column-based record organization of the in-memory database systems. Whereas, our SIMD technique is useful for multi-dimensional record scanning. As the sizes of registers and the memory become larger, our row-based SIMD scan can have bigger impact on the performance. Moreover, since our technique is orthogonal to the parallelization techniques for multi-core processors, it can be applied to both uni-processors and multi-core processors without too many changes in the software architectures.

Method for Applying Wavefront Parallel Processing on Cubemap Video (큐브맵 영상에 Wavefront 병렬 처리를 적용하는 방법)

  • Hong, Seok Jong;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.401-404
    • /
    • 2017
  • The 360 VR video has a format of a stereoscopic shape such as an isometric shape or a cubic shape or a cubic shape. Although these formats have different characteristics, they have in common that the resolution is higher than that of a normal 2D video. Therefore, it takes much longer time to perform coding/decoding on 360 VR video than 2D Video, so parallel processing techniques are essential when it comes to coding 360 VR video. HEVC, the state of art 2D video codec, uses Wavefront Parallel Processing (WPP) technology as a standard for parallelization. This technique is optimized for 2D videos and does not show optimal performance when used in 3D videos. Therefore, a suitable method for WPP is required for 3D video. In this paper, we propose WPP coding/decoding method which improves WPP performance on cube map format 3D video. The experiment was applied to the HEVC reference software HM 12.0. The experimental results show that there is no significant loss of PSNR compared with the existing WPP, and the coding complexity of 15% to 20% is further reduced. The proposed method is expected to be included in the future 3D VR video codecs.

A Study on Parallel Performance Optimization Method for Acceleration of High Resolution SAR Image Processing (고해상도 SAR 영상처리 고속화를 위한 병렬 성능 최적화 기법 연구)

  • Lee, Kyu Beom;Kim, Gyu Bin;An, Sol Bo Reum;Cho, Jin Yeon;Lim, Byoung-Gyun;Kim, Dong-Hyun;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.503-512
    • /
    • 2018
  • SAR(Synthetic Aperture Radar) is a technology to acquire images by processing signals obtained from radar, and there is an increasing demand for utilization of high-resolution SAR images. In this paper, for high-speed processing of high-resolution SAR image data, a study for SAR image processing algorithms to achieve optimal performance in multi-core based computer architecture is performed. The performance deterioration due to a large amount of input/output data for high resolution images is reduced by maximizing the memory utilization, and the parallelization ratio of the code is increased by using dynamic scheduling and nested parallelism of OpenMP. As a result, not only the total computation time is reduced, but also the upper bound of parallel performance is increased and the actual parallel performance on a multi-core system with 10 cores is improved by more than 8 times. The result of this study is expected to be used effectively in the development of high-resolution SAR image processing software for multi-core systems with large memory.