• 제목/요약/키워드: Software classification

Search Result 912, Processing Time 0.027 seconds

Effect of Training Sequence Control in On-line Learning for Multilayer Perceptron (다계층 퍼셉트론의 온라인 학습에서 학습 순서 제어의 효과)

  • Lee, Jae-Young;Kim, Hwang-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.491-502
    • /
    • 2010
  • When human beings acquire and develop knowledge through education, their prior knowledge influences the next learning process. As this is a fact that should be considered in machine learning, we need to examine the effects of controlling the order of training sequence on machine learning. In this research, the role of the supervisor is extended to control the order of training samples, in addition to just instructing the target values for classification problems. The supervisor sequences the training examples categorized by SOM to the learning model which in this case is MLP. The proposed method is distinguished in that it selects the most instructive example from categories formed by SOM to assist the learning progress, while others use SOM only as a preprocessing method for training samples. The result shows that the method is effective in terms of the number of samples used and time taken in training.

Generation and Selection of Nominal Virtual Examples for Improving the Classifier Performance (분류기 성능 향상을 위한 범주 속성 가상예제의 생성과 선별)

  • Lee, Yu-Jung;Kang, Byoung-Ho;Kang, Jae-Ho;Ryu, Kwang-Ryel
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.12
    • /
    • pp.1052-1061
    • /
    • 2006
  • This paper presents a method of using virtual examples to improve the classification accuracy for data with nominal attributes. Most of the previous researches on virtual examples focused on data with numeric attributes, and they used domain-specific knowledge to generate useful virtual examples for a particularly targeted learning algorithm. Instead of using domain-specific knowledge, our method samples virtual examples from a naive Bayesian network constructed from the given training set. A sampled example is considered useful if it contributes to the increment of the network's conditional likelihood when added to the training set. A set of useful virtual examples can be collected by repeating this process of sampling followed by evaluation. Experiments have shown that the virtual examples collected this way.can help various learning algorithms to derive classifiers of improved accuracy.

A Separate Learning Algorithm of Two-Layered Networks with Target Values of Hidden Nodes (은닉노드 목표 값을 가진 2개 층 신경망의 분리학습 알고리즘)

  • Choi, Bum-Ghi;Lee, Ju-Hong;Park, Tae-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.12
    • /
    • pp.999-1007
    • /
    • 2006
  • The Backpropagation learning algorithm is known to have slow and false convergence aroused from plateau and local minima. Many substitutes for backpropagation announced so far appear to pay some trade-off for convergence speed and stability of convergence according to parameters. Here, a new algorithm is proposed, which avoids some of those problems associated with the conventional backpropagation problems, especially with local minima, and gives relatively stable and fast convergence with low storage requirement. This is the separate learning algorithm in which the upper connections, hidden-to-output, and the lower connections, input-to-hidden, separately trained. This algorithm requires less computational work than the conventional backpropagation and other improved algorithms. It is shown in various classification problems to be relatively reliable on the overall performance.

Classification of HDAC8 Inhibitors and Non-Inhibitors Using Support Vector Machines

  • Cao, Guang Ping;Thangapandian, Sundarapandian;John, Shalini;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • v.4 no.1
    • /
    • pp.2.1-2.7
    • /
    • 2012
  • Introduction: Histone deacetylases (HDAC) are a class of enzymes that remove acetyl groups from ${\varepsilon}$-N-acetyl lysine amino acids of histone proteins. Their action is opposite to that of histone acetyltransferase that adds acetyl groups to these lysines. Only few HDAC inhibitors are approved and used as anti-cancer therapeutics. Thus, discovery of new and potential HDAC inhibitors are necessary in the effective treatment of cancer. Materials and Methods: This study proposed a method using support vector machine (SVM) to classify HDAC8 inhibitors and non-inhibitors in early-phase virtual compound filtering and screening. The 100 experimentally known HDAC8 inhibitors including 52 inhibitors and 48 non-inhibitors were used in this study. A set of molecular descriptors was calculated for all compounds in the dataset using ADRIANA. Code of Molecular Networks. Different kernel functions available from SVM Tools of free support vector machine software and training and test sets of varying size were used in model generation and validation. Results and Conclusion: The best model obtained using kernel functions has shown 75% of accuracy on test set prediction. The other models have also displayed good prediction over the test set compounds. The results of this study can be used as simple and effective filters in the drug discovery process.

Helper Classification via Three Dimensional Visualization of Character-net (Character-net의 3차원 시각화를 통한 조력자의 유형 분류)

  • Park, Seung-Bo;Jeon, Yoon Bae;Park, Juhyun;You, Eun Soon
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.53-62
    • /
    • 2018
  • It is necessary to analyze the character that are a key element of the story in order to analyze the story. Current character analysis methods such as Character-net and RoleNet are not sufficient to classify the roles of supporting characters by only analyzing the results of the final accumulated stories. It is necessary to study the time series analysis method according to the story progress in order to analyze the role of supporting characters rather than the accumulated story analysis method. In this paper, we propose a method to classify helpers as a mentor and a best friend through 3-D visualization of Character-net and evaluate the accuracy of the method. WebGL is used to configure the interface for 3D visualization so that anyone can see the results on the web browser. It is also proposed that rules to distinguish mentors and best friends and evaluated their performance. The results of the evaluation of 10 characters selected for 7 films confirms that they are 90% accurate.

De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining

  • Su, Xin;Liu, Xuchong;Lin, Jiuchuang;He, Shiming;Fu, Zhangjie;Li, Wenjia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3230-3253
    • /
    • 2017
  • Android malware steals users' private information, and embedded unsafe advertisement (ad) libraries, which execute unsafe code causing damage to users. The majority of such traffic is HTTP and is mixed with other normal traffic, which makes the detection of malware and unsafe ad libraries a challenging problem. To address this problem, this work describes a novel HTTP traffic flow mining approach to detect and categorize Android malware and unsafe ad library. This work designed AndroCollector, which can automatically execute the Android application (app) and collect the network traffic traces. From these traces, this work extracts HTTP traffic features along three important dimensions: quantitative, timing, and semantic and use these features for characterizing malware and unsafe ad libraries. Based on these HTTP traffic features, this work describes a supervised classification scheme for detecting malware and unsafe ad libraries. In addition, to help network operators, this work describes a fine-grained categorization method by generating fingerprints from HTTP request methods for each malware family and unsafe ad libraries. This work evaluated the scheme using HTTP traffic traces collected from 10778 Android apps. The experimental results show that the scheme can detect malware with 97% accuracy and unsafe ad libraries with 95% accuracy when tested on the popular third-party Android markets.

An Algorithms for Tournament-based Big Data Analysis (토너먼트 기반의 빅데이터 분석 알고리즘)

  • Lee, Hyunjin
    • Journal of Digital Contents Society
    • /
    • v.16 no.4
    • /
    • pp.545-553
    • /
    • 2015
  • While all of the data has a value in itself, most of the data that is collected in the real world is a random and unstructured. In order to extract useful information from the data, it is need to use the data transform and analysis algorithms. Data mining is used for this purpose. Today, there is not only need for a variety of data mining techniques to analyze the data but also need for a computational requirements and rapid analysis time for huge volume of data. The method commonly used to store huge volume of data is to use the hadoop. A method for analyzing data in hadoop is to use the MapReduce framework. In this paper, we developed a tournament-based MapReduce method for high efficiency in developing an algorithm on a single machine to the MapReduce framework. This proposed method can apply many analysis algorithms and we showed the usefulness of proposed tournament based method to apply frequently used data mining algorithms k-means and k-nearest neighbor classification.

Update of Head and Neck Cancer Staging in the 8th Edition Cancer Staging Manual of the American Joint Committee on Cancer (두경부암 병기 설정의 최신 변화: AJCC 암 병기설정 매뉴얼8판)

  • Hong, Hyun Jun
    • Korean Journal of Head & Neck Oncology
    • /
    • v.33 no.2
    • /
    • pp.9-15
    • /
    • 2017
  • The recently released the $8^{th}$ edition of the American Joint Committee on Cancer (AJCC) Staging Manual introduces significant modifications from the prior $7^{th}$ edition. In this paper, the contents of the new changes in the decision of cancer of the head and neck is summarized except changes in staging of skin and thyroid cancer. In addition to the 8th edition, 1) Addition of extracapsular involvement in metastatic lymph nodes (N category) 2) Oral cancer T classification change, 3) Staging of the pharyngeal cancer was divided into 3 chapters: high-risk human papilloma virus (HR-HPV) associated oropharyngeal cancer (OPC), non HR-HPV associated OPC and hypopharynx cancer (HPC), and nasopharynx cancer (NPC) 4) Changes in T and N classification in NPC, 5) In the case of cancer of unknown primary, P16-positive case is defined as HR-HPV related OPC, and EBV-positive case is defined as NPC. The process that led to these changes highlights the need to collect high-fidelity cancer registry-level data that can be used to confirm prognostic observations identified in institutional data sets. Clinicians will continue to use the latest information for patient care, including scientific content of the 8th Edition Manual. All newly diagnosed cases through December $31^{st}$ 2017 should be staged with the 7th edition. The time extension will allow all partners to develop and update protocols and guidelines and for software vendors to develop, test, and deploy their products in time for the data collection and implementation of the 8th edition in 2018. The 8th edition strikes a balance between a personalized, complex system and a more general, simpler one that maintains the user-friendliness and worldwide acceptability of the traditional TNM staging paradigm.

A Study on Classification of Teaching-Learning Materials in Mathematics Using Computers (교수-학습 자료 분류 체계화 연구 - 수학 교과 분류체계를 중심으로 -)

  • 황혜정;신항균
    • School Mathematics
    • /
    • v.6 no.1
    • /
    • pp.91-118
    • /
    • 2004
  • Since 1998 year, many educational software and its contents have been developed by individuals and public institutes. However, it is not easy to re-use the contents effectively and consistently, because they should be changed and reorganized whenever a curriculum is changed. Therefore, it is important for each subject to establish new system in which the contents or their teaching-learning elements are not changed although new curriculum appears. In this respect, in last year(2003 year), while setting mathematics as a representative subject, KERIS executed a study on developing a system(or method) of classifying teaching-learning materials in mathematics using computers, based on future-oriented curriculum including the current mathematics curriculum. Finally, for this study, the most essential and basic teaching-teaming 'units' were developed and the total number of units were 339. Also, in addition to the development of 'units', the 'elements' were developed for understanding more concrete contents included in each 'unit' and the total number of elements were 1191.

  • PDF

Identification of country of production of veal meat by NIRS and by meat quality measurements.

  • Berzaghi, Paolo;Serva, Lorenzo;Gottardo, Flaviana;Cozzi, Giulio;Andrighetto, Igino
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1255-1255
    • /
    • 2001
  • The study used 356 veal calf meat samples received from Finland (n=16), France (n=109), Italy (n=81) and The Netherlands (n=150). Calves were raised under experimental protocols that compared feeding and housing practices normally used in each county to treatments aiming at improving animal welfare. Samples were taken at the $8^{th}$ rib of Longissimus thoracis muscle 24h after slaughter, They were kept refrigerated ( $2-4^{\circ}C$) under vacuum package for 6d and then frozen ($-20^{\circ}C$) until meat quality evaluation. Measurements included pH, color (Hunter Lab system), shear force, chemical composition (DM, Ash, Ether Extract, collagen and haematin content), weight and area cooking losses and a sensory evaluation by a group of panelists. A sample of meat was ground with a blade mill and scanned in duplicate between 1100 and 1498 nm (FOSS NIR Systems 5000). WinISI software was used to develop a discriminating equation using NIR spectra (SNV-detrend, derivative=1, gap=4nm, smooth=4nm). The Proc ANOVA and DISCRIM of SAS were used for all the laboratory determinations. County of production had a significant (P<0.01) effect on all the parameters. However, discriminant analysis using any or few laboratory parameters resulted in great errors of county classification. A more accurate (98.8%) classification was obtained only when using all the laboratory parameters. NIRS classified correctly 354 of the 356 samples (99.4%). Provided with a larger data set, NIRS could be used to identify country of production of veal meat.

  • PDF