• Title/Summary/Keyword: Software classification

Search Result 912, Processing Time 0.027 seconds

A Memory-based Reasoning Algorithm using Adaptive Recursive Partition Averaging Method (적응형 재귀 분할 평균법을 이용한 메모리기반 추론 알고리즘)

  • 이형일;최학윤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.478-487
    • /
    • 2004
  • We had proposed the RPA(Recursive Partition Averaging) method in order to improve the storage requirement and classification rate of the Memory Based Reasoning. That algorithm worked not bad in many area, however, the major drawbacks of RPA are it's partitioning condition and the way of extracting major patterns. We propose an adaptive RPA algorithm which uses the FPD(feature-based population densimeter) to stop the ARPA partitioning process and produce, instead of RPA's averaged major pattern, optimizing resulting hyperrectangles. The proposed algorithm required only approximately 40% of memory space that is needed in k-NN classifier, and showed a superior classification performance to the RPA. Also, by reducing the number of stored patterns, it showed an excellent results in terms of classification when we compare it to the k-NN.

Ensemble Classifier with Negatively Correlated Features for Cancer Classification (암 분류를 위한 음의 상관관계 특징을 이용한 앙상블 분류기)

  • 원홍희;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1124-1134
    • /
    • 2003
  • The development of microarray technology has supplied a large volume of data to many fields. In particular, it has been applied to prediction and diagnosis of cancer, so that it expectedly helps us to exactly predict and diagnose cancer. It is essential to efficiently analyze DNA microarray data because the amount of DNA microarray data is usually very large. Since accurate classification of cancer is very important issue for treatment of cancer, it is desirable to make a decision by combining the results of various expert classifiers rather than by depending on the result of only one classifier. Generally combining classifiers gives high performance and high confidence. In spite of many advantages of ensemble classifiers, ensemble with mutually error-correlated classifiers has a limit in the performance. In this paper, we propose the ensemble of neural network classifiers learned from negatively correlated features using three benchmark datasets to precisely classify cancer, and systematically evaluate the performances of the proposed method. Experimental results show that the ensemble classifier with negatively correlated features produces the best recognition rate on the three benchmark datasets.

Linguistic Features Discrimination for Social Issue Risk Classification (사회적 이슈 리스크 유형 분류를 위한 어휘 자질 선별)

  • Oh, Hyo-Jung;Yun, Bo-Hyun;Kim, Chan-Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.541-548
    • /
    • 2016
  • The use of social media is already essential as a source of information for listening user's various opinions and monitoring. We define social 'risks' that issues effect negative influences for public opinion in social media. This paper aims to discriminate various linguistic features and reveal their effects for building an automatic classification model of social risks. Expecially we adopt a word embedding technique for representation of linguistic clues in risk sentences. As a preliminary experiment to analyze characteristics of individual features, we revise errors in automatic linguistic analysis. At the result, the most important feature is NE (Named Entity) information and the best condition is when combine basic linguistic features. word embedding, and word clusters within core predicates. Experimental results under the real situation in social bigdata - including linguistic analysis errors - show 92.08% and 85.84% in precision respectively for frequent risk categories set and full test set.

A Pre-processing Study to Solve the Problem of Rare Class Classification of Network Traffic Data (네트워크 트래픽 데이터의 희소 클래스 분류 문제 해결을 위한 전처리 연구)

  • Ryu, Kyung Joon;Shin, DongIl;Shin, DongKyoo;Park, JeongChan;Kim, JinGoog
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.411-418
    • /
    • 2020
  • In the field of information security, IDS(Intrusion Detection System) is normally classified in two different categories: signature-based IDS and anomaly-based IDS. Many studies in anomaly-based IDS have been conducted that analyze network traffic data generated in cyberspace by machine learning algorithms. In this paper, we studied pre-processing methods to overcome performance degradation problems cashed by rare classes. We experimented classification performance of a Machine Learning algorithm by reconstructing data set based on rare classes and semi rare classes. After reconstructing data into three different sets, wrapper and filter feature selection methods are applied continuously. Each data set is regularized by a quantile scaler. Depp neural network model is used for learning and validation. The evaluation results are compared by true positive values and false negative values. We acquired improved classification performances on all of three data sets.

A Study on the PBL-based AI Education for Computational Thinking (컴퓨팅 사고력 향상을 위한 문제 중심학습 기반 인공지능 교육 방안)

  • Choi, Min-Seong;Choi, Bong-Jun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.110-115
    • /
    • 2021
  • With the era of the 4th Industrial Revolution, education on artificial intelligence is one of the important topics. However, since existing education is aimed at knowledge, it is not suitable for developing the active problem-solving ability and AI utilization ability required by artificial intelligence education. To solve this problem, we proposes PBL-based education method in which learners learn in the process of solving the presented problem. The problem presented to the learner is a completed project. This project consists of three types: a classification model, the training data of the classification model, and the block code to be executed according to the classified result. The project works, but each component is designed to perform a low level of operation. In order to solve this problem, the learners can expect to improve their computational thinking skills by finding problems in the project through testing, finding solutions through discussion, and improving to a higher level of operation.

IoT Malware Detection and Family Classification Using Entropy Time Series Data Extraction and Recurrent Neural Networks (엔트로피 시계열 데이터 추출과 순환 신경망을 이용한 IoT 악성코드 탐지와 패밀리 분류)

  • Kim, Youngho;Lee, Hyunjong;Hwang, Doosung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.197-202
    • /
    • 2022
  • IoT (Internet of Things) devices are being attacked by malware due to many security vulnerabilities, such as the use of weak IDs/passwords and unauthenticated firmware updates. However, due to the diversity of CPU architectures, it is difficult to set up a malware analysis environment and design features. In this paper, we design time series features using the byte sequence of executable files to represent independent features of CPU architectures, and analyze them using recurrent neural networks. The proposed feature is a fixed-length time series pattern extracted from the byte sequence by calculating partial entropy and applying linear interpolation. Temporary changes in the extracted feature are analyzed by RNN and LSTM. In the experiment, the IoT malware detection showed high performance, while low performance was analyzed in the malware family classification. When the entropy patterns for each malware family were compared visually, the Tsunami and Gafgyt families showed similar patterns, resulting in low performance. LSTM is more suitable than RNN for learning temporal changes in the proposed malware features.

Cell Images Classification using Deep Convolutional Autoencoder of Unsupervised Learning (비지도학습의 딥 컨벌루셔널 자동 인코더를 이용한 셀 이미지 분류)

  • Vununu, Caleb;Park, Jin-Hyeok;Kwon, Oh-Jun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.942-943
    • /
    • 2021
  • The present work proposes a classification system for the HEp-2 cell images using an unsupervised deep feature learning method. Unlike most of the state-of-the-art methods in the literature that utilize deep learning in a strictly supervised way, we propose here the use of the deep convolutional autoencoder (DCAE) as the principal feature extractor for classifying the different types of the HEp-2 cell images. The network takes the original cell images as the inputs and learns to reconstruct them in order to capture the features related to the global shape of the cells. A final feature vector is constructed by using the latent representations extracted from the DCAE, giving a highly discriminative feature representation. The created features will be fed to a nonlinear classifier whose output will represent the final type of the cell image. We have tested the discriminability of the proposed features on one of the most popular HEp-2 cell classification datasets, the SNPHEp-2 dataset and the results show that the proposed features manage to capture the distinctive characteristics of the different cell types while performing at least as well as the actual deep learning based state-of-the-art methods.

The classification of super app consumer for marketplace strategy - Focusing on the shopping orientations - (Super app marketplace 전략을 위한 소비자 유형화 - 쇼핑 성향을 중심으로 -)

  • Hye Jung Kim;Young-Ju Rhee
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.3
    • /
    • pp.330-345
    • /
    • 2023
  • This study aimed to categorize consumers using super app functional characteristics to identify demographic differences, and analyze shopping orientations by consumer type. This data can be used by fashion and beauty companies for product planning and marketing strategies. To categorize super app consumers, data were analyzed with SPSS v.26.0 software using frequency, factor, reliability K-mean cluster, and distributed analyses, one-way-ANOVAs, and Scheffe verification. Cross-analysis was conducted to correlate super app consumer types with demographic characteristics. One-way-ANOVAs and Scheffe verification were used to analyze the differences in shopping preferences between super app consumer groups. As a result of our analyses, super app consumers were classified into four types: the ration type, the low-use type, the multifunction type, and the habit type. There were statistically significant differences between these types in age, occupation, marital status, average monthly household income, and shopping impact factors. Five super app user shopping orientations were identified: brand pursuit, pleasure pursuit, trend pursuit, risk perception, and economic orientation. The differences in the preferred orientation between super app consumer types were found to be statistically significant. The majority of respondents were multifunction type consumers. This group used the super app most frequently and effectively. They also demonstrated the highest scores for all five of the shopping orientations. The classification of consumer types in this study will allow the fashion and beauty industries to utilize super apps for more targeted product design and marketing.

Transfer Learning for Caladium bicolor Classification: Proof of Concept to Application Development

  • Porawat Visutsak;Xiabi Liu;Keun Ho Ryu;Naphat Bussabong;Nicha Sirikong;Preeyaphorn Intamong;Warakorn Sonnui;Siriwan Boonkerd;Jirawat Thongpiem;Maythar Poonpanit;Akarasate Homwiseswongsa;Kittipot Hirunwannapong;Chaimongkol Suksomsong;Rittikait Budrit
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.126-146
    • /
    • 2024
  • Caladium bicolor is one of the most popular plants in Thailand. The original species of Caladium bicolor was found a hundred years ago. Until now, there are more than 500 species through multiplication. The classification of Caladium bicolor can be done by using its color and shape. This study aims to develop a model to classify Caladium bicolor using a transfer learning technique. This work also presents a proof of concept, GUI design, and web application deployment using the user-design-center method. We also evaluated the performance of the following pre-trained models in this work, and the results are as follow: 87.29% for AlexNet, 90.68% for GoogleNet, 93.59% for XceptionNet, 93.22% for MobileNetV2, 89.83% for RestNet18, 88.98% for RestNet50, 97.46% for RestNet101, and 94.92% for InceptionResNetV2. This work was implemented using MATLAB R2023a.

IACS UR E26 - Analysis of the Cyber Resilience of Ships (국제선급협회 공통 규칙 - 선박의 사이버 복원력에 대한 기술적 분석)

  • Nam-seon Kang;Gum-jun Son;Rae-Chon Park;Chang-sik Lee;Seong-sang Yu
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.27-36
    • /
    • 2024
  • In this paper, we analyze the unified requirements of international association of classification societies - cyber resilience of ships, ahead of implementation of the agreement on July 1, 2024, and respond to ship cyber security and resilience programs based on 5 requirements, 17 details, and documents that must be submitted or maintained according to the ship's cyber resilience,. Measures include document management such as classification certification documents and design documents, configuration of a network with enhanced security, establishment of processes for accident response, configuration management using software tools, integrated network management, malware protection, and detection of ship network security threats with security management solutions. proposed a technology capable of real-time response.