Hwang, Young Sup;Kwon, Jin Baek;Moon, Jae Chan;Cho, Seong Je
Journal of Information Processing Systems
/
v.9
no.3
/
pp.395-404
/
2013
In order to classify a web page as being benign or malicious, we designed 14 basic and 16 extended features. The basic features that we implemented were selected to represent the essential characteristics of a web page. The system heuristically combines two basic features into one extended feature in order to effectively distinguish benign and malicious pages. The support vector machine can be trained to successfully classify pages by using these features. Because more and more malicious web pages are appearing, and they change so rapidly, classifiers that are trained by old data may misclassify some new pages. To overcome this problem, we selected an adaptive support vector machine (aSVM) as a classifier. The aSVM can learn training data and can quickly learn additional training data based on the support vectors it obtained during its previous learning session. Experimental results verified that the aSVM can classify malicious web pages adaptively.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.11a
/
pp.146-149
/
2014
최근 자동차 산업과 IT 기술의 융합이 활발해지면서 스마트카, 자율주행 자동차(무인 자동차)와 같은 지능형 자동차 개발이 활발히 진행되고 지능형 자동차의 비전 기반 기술개발도 활발히 진행되고 있다. 고속도로와 같이 포장된 도로나 자갈길과 같은 비포장 도로에서도 운전자의 승차감을 고려한 능동적 안전시스템과 안정적인 자율주행 자동차의 주행능력을 보장하는 기술들 중 도로 유형을 판단하는 것이 중요 요소 중 하나이다. 따라서 본 논문에서는 가중치 기반 클러스터링 기술을 이용하여 도로표면 유형을 분류하는 알고리즘을 제안한다. 아스팔트, 자갈길, 흙길, 눈길의 도로표면 영상 데이터를 히스토그램의 분포도와 최고점 위치, 에지 영상의 에지량, 채도성분을 이용하여 특징값을 추출하고 클러스터를 구성한다. 분류할 입력 도로표면 영상에 대해 특징값을 분석한 후 탐색범위 내 선택된 각 클러스터의 벡터와의 거리를 측정하여 가중치를 계산하고 가중치가 높은 클러스터를 분류하여 입력 영상에 대한 도로표면을 결정한다. 실험결과 제안하는 방법이 각 도로표면 영상의 특징값과 이를 이용한 가중치만을 이용하여 약 91.25%의 정확도로 도로의 표면을 분류해 내는 것을 볼 수 있었다.
Conducting sentiment analysis and opinion mining are challenging tasks in natural language processing. Many of the sentiment analysis and opinion mining applications focus on product reviews, social media reviews, forums and microblogs whose reviews are topic-similar and opinion-rich. In this paper, we try to analyze the sentiments of sentences from online webcast reviews that scroll across the screen, which we call live barrages. Contrary to social media comments or product reviews, the topics in live barrages are more fragmented, and there are plenty of invalid comments that we must remove in the preprocessing phase. To extract evaluative sentiment sentences, we proposed a novel approach that clusters the barrages from the same commenter to solve the problem of scattering the information for each barrage. The method developed in this paper contains two subtasks: in the data preprocessing phase, we cluster the sentences from the same commenter and remove unavailable sentences; and we use a semi-supervised machine learning approach, the naïve Bayes algorithm, to analyze the sentiment of the barrage. According to our experimental results, this method shows that it performs well in analyzing the sentiment of online webcast barrages.
Kim, Dong Gil;Park, Yong-Soon;Park, Lae-Jeong;Chung, Tae-Yun
IEMEK Journal of Embedded Systems and Applications
/
v.14
no.4
/
pp.207-218
/
2019
The purpose of this study is to develop a model that can systematically study the whole learning process of machine learning. Since the existing model describes the learning process with minimum coding, it can learn the progress of machine learning sequentially through the new model, and can visualize each process using the tensor flow. The new model used all of the existing model algorithms and confirmed the importance of the variables that affect the target variable, survival. The used to classification training data into training and verification, and to evaluate the performance of the model with test data. As a result of the final analysis, the ensemble techniques is the all tutorial model showed high performance, and the maximum performance of the model was improved by maximum 5.2% when compared with the existing model using. In future research, it is necessary to construct an environment in which machine learning can be learned regardless of the data preprocessing method and OS that can learn a model that is better than the existing performance.
Recently, in order to effectively test deep neural network model for image processing application, researches have actively conducted to automatically generate data in corner-case that is not correctly predicted by the model. This paper proposes test data generation method that selects arbitrary words from input of system and transforms them into synonyms in order to test the bug reporter automatic assignment system based on sentence classification deep neural network model. In addition, we compare and evaluate the case of using proposed test data generation and the case of using existing difference-inducing test data generations based on various neuron coverages.
The purpose of this study is to present an evaluation model to measure the clarification level of stakeholder requirements of public sector software projects in the Republic of Korea. We tried to grasp the quality of proposal request through evaluation model. It also examines the impact of the level of stakeholder requirements on the level of system requirements. To do this, we analyzed existing research models and related standards related to business requirements and stakeholder requirements, and constructed evaluation models for the system operation concept documents in the ISO/IEC/IEEE 29148. The system operation concept document is a document prepared by organizing the requirements of stakeholders in the organization and sharing the intention of the organization. The evaluation model proposed in this study focuses on evaluating whether the contents related to the system operation concept are faithfully written in the request for proposal. The evaluation items consisted of three items: 'organization status', 'desired changes', and 'operational constraints'. The sample extracted 217 RFPs in the national procurement system. As a result of the analysis, the evaluation model proved to be valid and the internal consistency was maintained. The level of system operation concept was very low, and it was also found to affect the quality of system requirements. It is more important to clearly write stakeholders' requirements than the functional requirements. we propose a news classification methods for sentiment analysis that is effective for bankruptcy prediction model.
Analysis and Tracking of bug reports is a challenging field in software repositories mining. It is one of the fundamental ways to explores a large amount of data acquired from defect tracking systems to discover patterns and valuable knowledge about the process of bug triaging. Furthermore, bug data is publically accessible and available of the following systems, such as Bugzilla and JIRA. Moreover, with robust machine learning (ML) techniques, it is quite possible to process and analyze a massive amount of data for extracting underlying patterns, knowledge, and insights. Therefore, it is an interesting area to propose innovative and robust solutions to analyze and track bug reports originating from different open source projects, including Mozilla and Eclipse. This research study presents an ML-based classification model to analyze and track bug defects for enhancing software engineering management (SEM) processes. In this work, Artificial Neural Network (ANN) and Naive Bayesian (NB) classifiers are implemented using open-source bug datasets, such as Mozilla and Eclipse. Furthermore, different evaluation measures are employed to analyze and evaluate the experimental results. Moreover, a comparative analysis is given to compare the experimental results of ANN with NB. The experimental results indicate that the ANN achieved high accuracy compared to the NB. The proposed research study will enhance SEM processes and contribute to the body of knowledge of the data mining field.
Kim, Han-Kyum;Ahn, Yoo-Lim;Yoon, Seong-Ho;Lee, Young-Jae;Lee, Young-Heung;Lee, Weon-June;Kim, Hyun-Min;Kim, Young-Ok
Annual Conference of KIPS
/
2021.11a
/
pp.791-794
/
2021
범죄차량 판독 시스템, 지능화된 CCTV 등 차량과 관련된 시각지능에 관한 연구가 큰 관심을 받고 있다. 이 중 차량 분류 기술은, 특정 차량을 인식하는 핵심기술이다. 이와 관련한 기존 연구들은 큰 차종으로만 분류하거나, 분류 가능한 차종의 수, 정확도 등이 낮아 실용성 및 신뢰성이 떨어진다는 단점이 있다. 따라서, 본 논문에서는 차종을 정확하게 분류할 수 있는 2단계 차종 분류 알고리즘을 제안한다. 제안 시스템은 CNN으로 학습된 모델을 기반으로 1차로 차량의 유형을 분류하고, 2차로 정확한 차종을 분류한다. 실험 결과, 52개의 차종을 분류함에 있어 단일 분류 모델에 비해 5.3%p 더 높은 90.2%의 분류 정확도를 보였다. 이를 통해, 더욱 정확한 차종 분류가 가능하다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.169-171
/
2023
Wolff Parkinson White Syndrome(WPW)은 일반인과는 다르게 선천적으로 심방과 심실 사이에 부전도로(Accessory Pathway)가 존재하여 정상 전도와 비교하였을 때, 빠른 속도로 심실을 자극하여 부정맥을 일으키는 것을 의미한다. WPW는 부정맥이 주된 증상이기는 하나, 평소에는 무증상인 경우가 많고, 성인이 되어 갑작스럽게 발생하는 경우가 존재하기 때문에 인지하지 못하고 살아가는 환자들이 많다는 것이 특징이다. 이러한 특징은 갑작스러운 건강 악화가 타인의 생명에 악영향을 줄 수 있는 트럭 운전기사나 의사와 같은 직업군 등의 경우 WPW를 조기에 발견하고 치료해 위험을 사전에 방지하는 것이 매우 중요하다. 따라서, 본 논문에서는 Electrocardiogram(ECG) 데이터를 기반으로 WPW를 자동으로 분류하기 위한 Feature Ensemble 기반 심층 학습 프레임워크를 제안한다. 제안된 기법의 경우 단일 1D-CNN과 GRU를 이용한 기법 대비 F1-Score, Accuracy 기준의 성능 향상을 달성하였기에 본 Task에 적합함을 보여준다.
These days, as Interest in Image recognition with deep learning is increasing, there has been a lot of research in image recognition using deep learning. In this study, we propose a system for classifying rocks through rock images of 18 types of rock(6 types of igneous, 6 types of metamorphic, 6 types of sedimentary rock) which are addressed in the high school curriculum, using CNN model based on Tensorflow, deep learning open source framework. As a result, we developed a classifier to distinguish rocks by learning the images of rocks and confirmed the classification performance of rock classifier. Finally, through the mobile application implemented, students can use the application as a learning tool in classroom or on-site experience.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.