• Title/Summary/Keyword: Software Reliability Growth

Search Result 155, Processing Time 0.021 seconds

A Study of Infinite Failure NHPP Software Reliability Growth Model base on Record Value Statistics with Gamma Family of Lifetime Distribution (수명분포가 감마족인 기록값 통계량에 기초한 무한고장 NHPP 소프트웨어 신뢰성장 모형에 관한 비교 연구)

  • Kim, Hee-Cheul;Sin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.6 no.3
    • /
    • pp.145-153
    • /
    • 2006
  • Infinite failure NHPP models for a record value satisfies mode proposed in the literature exhibit either monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, propose comparative study of software reliability model using Erlang distribution, Rayleigh and Gumbel distribution. Equations to estimate the parameters using maximum likelihood estimation of infinite failure NHPP model based on failure data collected in the form of interfailure times are developed. For the sake of proposing distribution, we used to the special pattern. Analysis of failure data set using arithmetic and Laplace trend tests, goodness-of-fit test, bias tests is presented.

  • PDF

Bayesian parameter estimation and prediction in NHPP software reliability growth model (NHPP소프트웨어 신뢰도 성장모형에서 베이지안 모수추정과 예측)

  • Chang, Inhong;Jung, Deokhwan;Lee, Seungwoo;Song, Kwangyoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.755-762
    • /
    • 2013
  • In this paper we consider the NHPP software reliability model. And we deal with the maximum likelihood estimation and the Bayesian estimation with conjugate prior for parameter inference in the mean value function of Goel-Okumoto model (1979). The parameter estimates for the proposed model is presented by MLE and Bayes estimator in data set. We compare the predicted number of faults with the actual data set using the proposed mean value function.

A Study on the Reliability of S/W during the Developing Stage (소프트웨어 개발단계의 신뢰도에 관한 연구)

  • Yang, Gye-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.61-73
    • /
    • 2009
  • Many software reliability growth models(SRGM) have been proposed since the software reliability issue was raised in 1972. The technology to estimate and grow the reliability of developing S/W to target value during testing phase were developed using them. Most of these propositions assumed the S/W debugging testing efforts be constant or even did not consider them. A few papers were presented as the software reliability evaluation considering the testing effort was important afterwards. The testing effort forms which have been presented by this kind of papers were exponential, Rayleigh, Weibull, or Logistic functions, and one of these 4 types was used as a testing effort function depending on the S/W developing circumstances. I propose the methology to evaluate the SRGM using least square estimater and maximum likelihood estimater for those 4 functions, and then examine parameters applying actual data adopted from real field test of developing S/W.

A Study on the Reliability Comparison of S/W between Uniform Testing and Weibull Testing (소프트웨어의 일정테스트노력과 웨이불 테스트 노력의 비교 연구)

  • Che, Gyu-Shik;Kim, Yong-Kyung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.444-447
    • /
    • 2006
  • We propose software reliability growth model, considering testing effort resource during testing stage of S/W, and compare the time dependent testing effort resource behavior in this paper. We develop the data technology method for the S/W reliability measure. We study in detail between the time elapse and reliability. Also, we determine the optimum release time which meets the target reliability. We decide optimum release time for each condition how the reliability is good before testing after development.

  • PDF

Parameter Estimation and Prediction methods for Hyper-Geometric Distribution software Reliability Growth Model (초기하분포 소프트웨어 신뢰성 성장 모델에서의 모수 추정과 예측 방법)

  • Park, Joong-Yang;Yoo, Chang-Yeul;Lee, Bu-Kwon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.9
    • /
    • pp.2345-2352
    • /
    • 1998
  • The hyper-geometric distribution software reliability growth model was recently developed and successfully applied Due to mathematical difficultv of the maximum likclihmd method, the least squares method has hem suggested for parameter estimation by the previous studies. We first summarize and compare the minimization criteria adopted by the previous studies. It is theo shown that the weighted least squares method is more appropriate hecause of the nonhomogeneous variability of the number of newly detected faults. The adequacy of the weighted least squares method is illustrated by two numerical examples. Finally, we propose a new method fur predicting the number of faults newly discovered by next test instances. The new prediction method can be used for determining the time to stop testing.

  • PDF

Hyper-Geometric Distribution Software Reliability Growth Model : Generalizatio, Estimation and Prediction (초기하분포 소프트웨어 신뢰성 성장 모델 : 일반화, 추정과 예측)

  • Park, Jung-Yang;Yu, Chang-Yeol;Park, Jae-Hong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2343-2349
    • /
    • 1999
  • The hyper-geometric distribution software reliability growth model (HGDM) was recently developed and successfully applied to real data sets. The HGDM considers the sensitivity factor as a parameter to be estimated. In order to reflect the random behavior of the test-and-debug process, this paper generalizes the HGDM by assuming that the sensitivity factor is a binomial random variable. Such a generalization enables us to easily understand the statistical characteristics of the HGDM. It is shown that the least squares method produces the identical results for both the HGDM and the generalized HGDM. Methods for computing the maximum likelihood estimates and predicting the future outcomes are also presented.

  • PDF

A BAYESIAN APPROACH FOR A DECOMPOSITION MODEL OF SOFTWARE RELIABILITY GROWTH USING A RECORD VALUE STATISTICS

  • Choi, Ki-Heon;Kim, Hee-Cheul
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.243-252
    • /
    • 2001
  • The points of failure of a decomposition process are defined to be the union of the points of failure from two component point processes for software reliability systems. Because sampling from the likelihood function of the decomposition model is difficulty, Gibbs Sampler can be applied in a straightforward manner. A Markov Chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For model determination, we explored the prequential conditional predictive ordinate criterion that selects the best model with the largest posterior likelihood among models using all possible subsets of the component intensity functions. A numerical example with a simulated data set is given.

The Study for ENHPP Software Reliability Growth Model based on Burr Coverage Function (Burr 커버리지 함수에 기초한 ENHPP소프트웨어 신뢰성장모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.33-42
    • /
    • 2007
  • Accurate predictions of software release times, and estimation of the reliability and availability of a software product require quantification of a critical element of the software testing process : test coverage. This model called Enhanced non-homogeneous poission process(ENHPP). In this paper, exponential coverage and S-shaped model was reviewed, proposes the Kappa coverage model, which maked out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE statistics and Kolmogorov distance, for the sake of efficient model, was employed. From the analysis of mission time, the result of this comparative study shows the excellent performance of Burr coverage model rather than exponential coverage and S-shaped model using NTDS data. This analysis of failure data compared with the Kappa coverage model and the existing model(using arithmetic and Laplace trend tests, bias tests) is presented.

  • PDF

The Study for ENHPP Software Reliability Growth Model Based on Kappa(2) Coverage Function (Kappa(2) 커버리지 함수를 이용한 ENHPP 소프트웨어 신뢰성장모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2311-2318
    • /
    • 2007
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. Accurate predictions of software release times, and estimation of the reliability and availability of a software product require Release times of a critical element of the software testing process : test coverage. This model called Enhanced non-homogeneous Poission process(ENHPP). In this paper, exponential coverage and S-shaped model was reviewed, proposes the Kappa coverage model, which make out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE statistics and Kolmogorov distance, for the sake of efficient model, was employed. Numerical examples using real data set for the sake of proposing Kappa coverage model was employed. This analysis of failure data compared with the Kappaa coverage model and the existing model(using arithmetic and Laplace trend tests, bias tests) is presented.

Failure Prediction Model for Software Quality Diagnosis (소프트웨어 품질 진단을 위한 고장예측모델)

  • Jung Hye-jung
    • Journal of Venture Innovation
    • /
    • v.7 no.2
    • /
    • pp.143-152
    • /
    • 2024
  • Recently, as a lot of software with AI functions has been developed, the number of software products with various prediction functions is increasing, and as a result, the importance of software quality has increased. In particular, as consideration for functional safety of products with AI functions increases, software quality management is being conducted at a national level. In particular, the GS Quality Certification System is a quality certification system for software products that is being implemented at the national level, and the GS Certification System is also researching quality evaluation methods for AI products. In this study, we attempt to present an evaluation model that satisfies the basic conditions of software quality based on international standards among the various quality evaluation models presented to verify software reliability. Considering the software quality characteristics of the artificial intelligence sector, we study quality evaluation models, diagnose quality, and predict failures. .In this study, we propose an international standard model for artificial intelligence based on the software reliability growth model, present an evaluation model, and present a method for quality diagnosis through the model. In this respect, this study is considered to be important in that it can predict failures in advance and find failures in advance to prevent risks by predicting the failure time that will occur in software in the future. In particular, it is believed that predicting failures will be important in various safety-related software.