• 제목/요약/키워드: Software Learning Model

검색결과 802건 처리시간 0.033초

AI모델을 적용한 군 경계체계 지능화 방안 (A Methodology for Making Military Surveillance System to be Intelligent Applied by AI Model)

  • 한창희;구하림;박복기
    • 인터넷정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.57-64
    • /
    • 2023
  • 현재 진행되는 고령화 및 인구절벽으로 대표되는 인구구조적 문제는 한국군 경계임무에 심각한 도전이 되고 있다. 본 연구의 목적은 AI모델을 적용해 군 경계체계를 지능화하는 것이다. 본 연구를 통해 제4차 산업혁명과 그 핵심이 되는 인공지능 알고리즘의 의의가 경계근무 상황실 내에서의 단순작업을 기계화하여 작업효율을 극대화하는 것임을 실증한다. 하나의 완성된 시스템으로서 군경계체계를 개발하기 위해, 지능화·자동화된 군(軍) 경계체계라는 목표로부터 필요한 인공지능 기술인 다중 객체 추적(multi-object tracking, MOT) 기술을 선택한다. 또한 체계 사용자의 접근성 및 체계 이용의 효율성을 담보하기 위해서는 데이터 시각화(data visualization)와 사용자 인터페이스(user interface)를 꼽았다. 이 추가 요소를 결합하여 하나의 유기적인 소프트웨어 애플리케이션을 구성한다. CCTV 영상 데이터 수집한 장소는 00부대 제1정문 및 제2정문에 설치된 CCTV 카메라이며, 지통실의 협조 아래 영상 수집을 진행하였다. 실험결과를 통해 경계체계를 지능화·자동화시켜 더 많은 정보를 경계체계 운용인원에게 전달할 수 있음을 보였다. 그러 나 여전히 개발된 소프트웨어 경계체계 역시 한계점이 존재한다. 이를 설명하여 군 경계체계 개발의 향후 방향성을 제시한다.

A Comparative Study on Reservoir Level Prediction Performance Using a Deep Neural Network with ASOS, AWS, and Thiessen Network Data

  • Hye-Seung Park;Hyun-Ho Yang;Ho-Jun Lee; Jongwook Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.67-74
    • /
    • 2024
  • 본 논문에서는 기후 변화와 지속 가능한 수자원 관리의 중요성이 증가하는 가운데, 다양한 강우 측정 방법이 저수지 수위 예측 성능에 미치는 영향을 분석하기 위한 연구를 제시한다. 이를 위해 우리는 기상정보개방포털에서 제공하는 종관기상관측장비인 ASOS의 관측 강우, 자동기상관측장비인 AWS의 관측 강우, 그리고 면적강우비에 따라 재산정된 티센망 기반의 강우 데이터를 활용하여 신경망 기반 저수율 예측 모델에 대한 학습을 각각 수행하고, 학습된 모델의 예측 성능을 비교 및 분석하였다. 전라북도 소재 34개의 저수지에 대한 실험을 통해 각 강우량 측정방식이 저수율 예측 정확도 향상에 얼마나 기여하는지 조사하였다. 연구 결과, 티센망 기반의 강우 면적비를 활용한 저수지 강우 데이터가 가장 높은 예측 정확도를 제공한다는 것을 밝혀냈다. 이는 티센망이 주변 관측소들 사이의 정확한 거리를 고려함으로써 각 관측소가 대표하는 지역의 경계를 정의함으로써 각 지역의 실제 강우 상황을 더 정확하게 반영하기 때문이다. 이러한 발견은 정확한 지역 강우 데이터 학습이 저수율 예측에 있어 결정적인 요인 중 하나임을 시사한다. 더불어, 이 연구는 정밀한 강우 측정 및 데이터 분석의 중요성을 강조하며, 농업, 도시 계획, 홍수 관리와 같은 다양한 분야에서 예측 모델의 잠재적 응용 가능성을 제시한다.

X-ray 영상에서 VHS와 콥 각도 자동 추출을 위한 흉추 분할 기법 (A Thoracic Spine Segmentation Technique for Automatic Extraction of VHS and Cobb Angle from X-ray Images)

  • 이예은;한승화;이동규;김호준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권1호
    • /
    • pp.51-58
    • /
    • 2023
  • 본 논문에서는 X-ray 영상에서 의료 진단지표를 자동으로 추출하기 위한 조직분할 기법을 제안한다. 척추질환이나 심장질환에 대한 진단지표로서, 흉추-심장 비율이나 콥 각도 등의 지표를 산출하기 위해서는 흉부 X-ray 영상으로부터 흉추, 용골 및 심장의 영역을 정확하게 분할하는 과정이 필요하다. 본 연구에서는 이를 위하여 계층별로 영상의 고해상도의 표현과 저해상도의 특징지도로 변환되는 구조가 병렬적으로 연결되는 형태의 심층신경망 모델을 채택하였다. 이러한 구조는 영상에서 세부 조직의 상대적인 위치정보가 분할 과정에 효과적으로 반영될 수 있게 한다. 또한 픽셀 정보와 객체 정보가 다단계의 과정으로 상호 작용되는 OCR 모듈과, 네트워크의 각 채널이 서로 다른 가중치 값으로 반영되도록 하는 채널 어텐션 모듈을 결합하여 학습 성능을 개선할 수 있음을 보인다. 부수적으로 X-ray 영상에서 피사체의 위치 변화, 형태의 변형 및 크기 변이 등에도 강인한 성능을 제공하기 위하여 학습데이터를 증강하는 방법을 제시하였다. 총 145개의 인체 흉부 X-ray 영상과, 총 118개의 동물 X-ray 영상을 사용한 실험을 통하여 제안된 이론의 타당성을 평가하였다.

냉난방 시간을 예측하는 인공신경망의 구축 및 IoT 시스템에서의 활용 (Air-conditioning and Heating Time Prediction Based on Artificial Neural Network and Its Application in IoT System)

  • 김준수;이주익;김동호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.347-350
    • /
    • 2018
  • 사용자가 집에 도착하기 전에 IoT 시스템이 집안 온도를 자동으로 쾌적하게 하기 위해서는 사용자의 도착 예정 시간에 맞게 설정한 온도에 도달할 수 있는 최적의 에어컨 및 난방의 가동 시작 시간을 예측해야 한다. 가동 시간을 정확하게 예측한다면 불필요한 가동시간을 줄일 수 있기 때문에 요금 낭비를 피할 수 있는 효과가 있다. 본 논문은 에어컨과 보일러를 사용하는 집의 냉난방 시간을 예측하는 인공신경망과 이를 활용하는 IoT 시스템을 소개한다. 에어컨과 보일러가 특정 시작 온도에서 특정 목표 온도로 집안을 냉난방 하는데 걸리는 시간에 영향을 주는 변수는 집안의 구조, 집안의 크기, 외부 날씨 환경 등으로 매우 다양하다. 그중에서 측정 가능한 변수인 집안 온도, 집안 습도, 외부 온도, 외부 습도, 풍향, 풍도, 풍속 냉각 효과를 활용하여 학습데이터를 만들고 최적의 인공신경망을 구축하였다. 인공신경망을 구축한 후에는 이를 활용하는 IoT 시스템을 개발하였다. IoT 시스템은 라즈베리파이3 기반의 메인 시스템과 안드로이드 기반의 모바일 애플리케이션으로 구성하였다. 인공신경망을 활용하기 위해 모바일 애플리케이션의 GPS 센서를 활용하여 사용자의 이동 분석하고 귀가 시간을 예측하는 기능을 구현하였다.

  • PDF

다음 장소 예측을 위한 맵리듀스 기반의 이동 패턴 마이닝 시스템 설계 (Design of a MapReduce-Based Mobility Pattern Mining System for Next Place Prediction)

  • 김종환;이석준;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권8호
    • /
    • pp.321-328
    • /
    • 2014
  • 본 논문에서는 모바일 기기 사용자들의 다음 방문 장소를 효율적으로 예측할 수 있는 맵리듀스 기반의 이동 패턴 마이닝 시스템을 소개한다. 이 시스템은 대용량의 사용자 이동 궤적 데이터 집합으로부터 은닉 마코프 모델로 표현되는 각 사용자의 이동 패턴을 학습해내고, 이 모델을 현재 이동 궤적에 적용함으로써 다음 방문 장소를 예측한다. 본 시스템은 사용자별 이동 패턴 모델을 학습하는 후단부와 실시간으로 다음 방문 장소를 예측하는 전단부 등 크게 두 부분으로 구성된다. 이 중에서 후단부는 주요 장소 추출, 이동 궤적 변환, 이동 패턴 모델 학습 등 총 3개의 맵리듀스 작업 모듈들로 구성된다. 이에 반해, 본 시스템의 전단부는 이동 경로 후보군 생성, 다음 장소 예측 등 총 2개의 작업 모듈들로 구성된다. 그리고 본 시스템을 구성하는 각 작업 모듈의 맵과 리듀스 함수들은 하둡 인프라를 효과적으로 활용하여 병렬 처리를 극대화할 수 있도록 설계하였다. 대용량의 공개 벤치마크 데이터 집합인 GeoLife를 이용하여 본 논문에서 소개한 시스템의 성능을 분석하기 위한 실험들을 수행하였고, 실험 결과를 통해 본 시스템의 높은 성능을 확인할 수 있었다.

XML-GDM을 기반으로 한 UML 클래스 다이어그램으로 사상을 위한 XML문서와 질의의 객체 모델링 (Object Modeling for Mapping from XML Document and Query to UML Class Diagram based on XML-GDM)

  • 박대현;김용성
    • 정보처리학회논문지D
    • /
    • 제17D권2호
    • /
    • pp.129-146
    • /
    • 2010
  • 최근 다양한 분야에서 폭넓게 활용되고 있는 XML 문서는 유연하고도 개방적인 특성으로 인해 정보교환이나 전송을 위한 수단으로 널리 이용되고 있다. 한편 XML 문서를 위한 시각적, 직관적 질의 언어인 XML-GL은 질의에 대한 의미와 결과 문서의 구조를 시각적으로 표현할 수 있기 때문에 XML 문서에 대한 구조 검색과 정보의 공유가 용이하다. 그리고 UML은 정해진 표기법과 다양한 다이어그램을 이용하여 객체지향 분석과 설계를 위한 도구로 사용되고 있다. 따라서 본 논문은 XML-GL의 데이터 모델인 XML-GDM을 기반으로 표현된 XML 문서를 UML 클래스 다이어그램으로 사상하기 위한 새로운 객체 모델링 방안을 제안한다. 이를 통해서 XML 문서를 직관적인 방법으로 객체지향데이터로 변환하고 저장/관리할 수 있다. 또한 객체지향 검색방법을 적용하면 보다 효율적으로 XML 문서를 검색할 수가 있다.

클러스터링 기반 앙상블 모델 구성을 이용한 이상치 탐지 (Outlier Detection By Clustering-Based Ensemble Model Construction)

  • 박정희;김태공;김지일;최세목;이경훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권11호
    • /
    • pp.435-442
    • /
    • 2018
  • 이상치 탐지는 정상 데이터 분포를 크게 벗어나는 데이터 샘플을 탐지하는 것을 의미한다. 대부분의 이상치 탐지 방법은 데이터 샘플이 정상 상태를 벗어나는 정도를 나타내는 이상치 지수(outlier score)를 계산하여 주어진 임계값 이상일 때 이상치로 판정한다. 그러나, 데이터마다 이상치 지수의 범위가 다양하고 정상 데이터에 비해 이상치 데이터는 적은 비율로 존재하기 때문에 이상치 지수에 대한 임계값을 결정하기는 매우 어렵다. 또한, 실제 상황에서는 학습에 이용할 수 있는 충분한 양의 이상치를 포함하는 데이터의 획득이 용이하지 않다. 본 논문에서는 정상 데이터가 주어졌을 때 이를 이용하여 정상 데이터 영역을 나타내는 모델을 구성하고 새로운 데이터 샘플에 대해 이상치와 정상치의 이진 분류를 수행하는 방법으로 군집화 기반 이상치 탐지 방법을 제안한다. 그리고, 주어진 정상 데이터를 청크로 나누고 각 청크에 대해 클러스터링 모델을 구성한 후 모델들에 의한 이상치 판정 결과를 결합하는 앙상블 방법과 동적 변화가 있는 스트리밍 데이터에서의 적용 방법으로 확장한다. 실제 데이터와 인공 데이터를 이용한 실험결과는 제안 방법의 높은 성능을 보여준다.

스킵연결이 적용된 오토인코더 모델의 클러스터링 성능 분석 (Clustering Performance Analysis of Autoencoder with Skip Connection)

  • 조인수;강윤희;최동빈;박용범
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권12호
    • /
    • pp.403-410
    • /
    • 2020
  • 오토인코더의 데이터 복원(Output result) 기능을 이용한 노이즈 제거 및 초해상도와 같은 연구가 진행되는 가운데 오토인코더의 차원 축소 기능을 이용한 클러스터링의 성능 향상에 대한 연구도 활발히 진행되고 있다. 오토인코더를 이용한 클러스터링 기능과 데이터 복원 기능은 모두 동일한 학습을 통해 성능을 향상시킨다는 공통점이 있다. 본 논문은 이런 특징을 토대로, 데이터 복원 성능이 뛰어나도록 설계된 오토인코더 모델이 클러스터링 성능 또한 뛰어난지 알아보기 위한 실험을 진행했다. 데이터 복원 성능이 뛰어난 오토인코더를 설계하기 위해서 스킵연결(Skip connection) 기법을 사용했다. 스킵연결 기법은 기울기 소실(Vanishing gradient)현상을 해소해주고 모델의 학습 효율을 높인다는 장점을 가지고 있을 뿐만 아니라, 데이터 복원 시 손실된 정보를 보완해 줌으로써 데이터 복원 성능을 높이는 효과도 가지고 있다. 스킵연결이 적용된 오토인코더 모델과 적용되지 않은 모델의 데이터 복원 성능과 클러스터링 성능을 그래프와 시각적 추출물을 통해 결과를 비교해 보니, 데이터 복원 성능은 올랐지만 클러스터링 성능은 떨어지는 결과를 확인했다. 이 결과는 오토인코더와 같은 신경망 모델이 출력된 결과 성능이 좋다고 해서 각 레이어들이 데이터의 특징을 모두 잘 학습했다고 확신할 수 없음을 알려준다. 마지막으로 클러스터링의 성능을 좌우하는 잠재변수(latent code)와 스킵연결의 관계를 분석하여 실험 결과의 원인에 대해 파악하였고, 파악한 결과를 통해 잠재변수와 스킵연결의 특징정보를 이용해 클러스터링의 성능저하 현상을 보완할 수 있다는 사실을 보였다. 이 연구는 한자 유니코드 문제를 클러스터링 기법을 이용해 해결하고자 클러스터링 성능 향상을 위한 선행연구이다.

다중모형조합기법을 이용한 상품추천시스템 (Product Recommender Systems using Multi-Model Ensemble Techniques)

  • 이연정;김경재
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.39-54
    • /
    • 2013
  • 전자상거래의 폭발적 증가는 소비자에게 더 유리한 많은 구매 선택의 기회를 제공한다. 이러한 상황에서 자신의 구매의사결정에 대한 확신이 부족한 소비자들은 의사결정 절차를 간소화하고 효과적인 의사결정을 위해 추천을 받아들인다. 온라인 상점의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 그러나 사용자의 기호를 제대로 반영하지 못하는 추천시스템은 사용자의 실망과 시간낭비를 발생시킨다. 본 연구에서는 정확한 사용자의 기호 반영을 통한 추천기법의 정교화를 위해 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 본 연구에서 제안하는 모형은 크게 두 개의 단계로 이루어져 있으며, 첫 번째 단계에서는 상품군 별 우량고객 선정 규칙을 도출하기 위해서 로지스틱 회귀분석 모형, 의사결정나무 모형, 인공신경망 모형을 구축한 후 다중모형조합기법인 Bagging과 Bumping의 개념을 이용하여 세 가지 모형의 결과를 조합한다. 두 번째 단계에서는 상품군 별 연관관계에 관한 규칙을 추출하기 위하여 장바구니분석을 활용한다. 상기의 두 단계를 통하여 상품군 별로 구매가능성이 높은 우량고객을 선정하여 그 고객에게 관심을 가질만한 같은 상품군 또는 다른 상품군 내의 다른 상품을 추천하게 된다. 제안하는 상품추천시스템은 실제 운영 중인 온라인 상점인 'I아트샵'의 데이터를 이용하여 프로토타입을 구축하였고 실제 소비자에 대한 적용가능성을 확인하였다. 제안하는 모형의 유용성을 검증하기 위하여 제안 상품추천시스템의 추천과 임의 추천을 통한 추천의 결과를 사용자에게 제시하고 제안된 추천에 대한 만족도를 조사한 후 대응표본 T검정을 수행하였으며, 그 결과 사용자의 만족도를 유의하게 향상시키는 것으로 나타났다.

인공 신경망 기반의 고시간 해상도를 갖는 전력수요 예측기법 (An Electric Load Forecasting Scheme with High Time Resolution Based on Artificial Neural Network)

  • 박진웅;문지훈;황인준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권11호
    • /
    • pp.527-536
    • /
    • 2017
  • 최근 스마트 그리드 산업의 발달과 더불어 효과적인 에너지 관리 시스템의 필요성이 커지고 있다. 특히, 전기 부하 및 에너지 요금 감소를 위해서는 정확한 전력수요 예측과 그에 따른 효과적인 스마트 그리드 운영 전략이 필요하다. 본 논문에서는 보다 정확한 전력수요 예측을 위하여, 수요 시한 기준으로 수집된 전력 사용 데이터를 고시간 해상도로 분할하고, 이에 적합한 인공 신경망 기반의 전력수요 예측 모델을 구축하고자 한다. 예측 모델의 정확도를 향상시키기 위하여 우선, 수열 형태의 시계열 데이터가 가지는 주기성을 제대로 반영하지 못하는 기계 학습 모델의 문제점을 해결하고자, 시계열 데이터를 2차원 공간의 연속적인 데이터로 변환한다. 더욱이, 고시간 해상도에 따른 온도나 습도 등 외부 요인들의 보다 정확한 반영을 위해 이들에 대해서도 선형 보간법을 사용하여 세분화된 시점에서의 값을 추정하여 반영한다. 마지막으로, 구성된 특성 벡터에 대해 주성분 분석 수행을 통하여 불필요한 외부 요인을 제거한다. 예측 모델의 성능을 평가하기 위해서 5겹 교차 검증을 수행하였다. 실험 결과 모든 고시간 해상도에서 성능 향상을 보였으며, 특히 3분 해상도의 경우 3.71%의 가장 낮은 오차율을 보였다.