• 제목/요약/키워드: Software Defect Detection

검색결과 47건 처리시간 0.027초

대형 시스템 개발을 위한 시험능력을 고려한 소프트웨어 신뢰도 성장 모델 (Software Reliability Growth Model with the Testing Effort for Large System)

  • 이재기;이재정;남상식
    • 한국통신학회논문지
    • /
    • 제30권11A호
    • /
    • pp.987-994
    • /
    • 2005
  • 기존에 제안된 소프트웨어 신뢰도 성장모델(SRGM)들은 결함이 발견됨과 동시에 해결되는 것을 전제로 한 완전디버깅(PD: perfect debugging)을 추구한다. 그러나 실제 프로젝트 수행시 검출된 결함(에러)들은 일정한 시간이 지난 후 해결(제거)되거나 새로운 결함이 소프트웨어 내에 삽입되는 불완전디버정(ID: imperfect debugging) 상태에 놓이게 된다. 이러한 문제점들을 보완하기 위한 방안으로 본 논문에서는 소프트웨어의 고장을 발견 해결하는데 투입된 시험능력(test-effort)을 고려하여 이를 정형화된 모델로 발전시켜 실제 상황에 가까운 소프트웨어의 신뢰도를 평가하였다.

비파괴 검사를 위한 개선된 퍼지 이진화와 명암 대비 스트레칭을 이용한 세라믹 영상에서의 결함 영역 자동 검출 (Automatic Defect Detection using Fuzzy Binarization and Brightness Contrast Stretching from Ceramic Images for Non-Destructive Testing)

  • 김광백;송두헌
    • 한국정보통신학회논문지
    • /
    • 제21권11호
    • /
    • pp.2121-2127
    • /
    • 2017
  • 본 논문에서는 세라믹 소재의 영상에서 비파괴 검사를 위한 사람 눈으로 판단하기 어려운 결함 영역을 검출하기 위해 다양한 영상 처리 기법을 활용하여 자동으로 결함 의심 부분을 검출하는 방법을 제안한다. 제안된 방법은 명암도의 차이를 통해 배경이 제거된 관심 영역에서 개선된 명암 대비 스트레칭 기법을 적용하여 관심 영역의 명암 대비를 강조한다. 우리가 제안한 방법은 다양한 두께의 세라믹 소재 영상에 대해 안정적으로 결함을 추출하기 위해 설계되었다. 실험은 명암이 강조된 ROI 영역에서 8, 10, 11, 16, 22mm 영상의 결함 영역 검출을 실험했는데 다른 경우는 히스토그램 이진화 기법을 적용하여 결함의 후보 영역을 추출하지만 8mm 영상은 다른 영상에 비해 결함의 밝기값과 잡음의 밝기값이 유사하여 허위 양성 영역이 결함으로 추출되는 문제점이 발생한다. 이 문제를 해결하기 위해 8mm는 개선된 퍼지 이진화 기법을 적용하여 결함 후보 영역을 추출한다. 제안된 방법을 다섯 종류의 세라믹 영상을 대상으로 실험한 결과, 제안된 검출 방법이 기존의 검출 방법보다 모든 두께의 세라믹 영상에서 효과적으로 결함 영역이 검출되는 것을 확인하였다.

깊이 이미지를 이용한 타이어 표면 결함 검출 방법에 관한 연구 (A Study on Tire Surface Defect Detection Method Using Depth Image)

  • 김현석;고동범;이원곡;배유석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권5호
    • /
    • pp.211-220
    • /
    • 2022
  • 최근 4차 산업혁명으로 촉발된 스마트공장에 관한 연구가 활발히 진행되고 있다. 이에 따라 제조업에서는 강건한 성능의 딥러닝 기술을 바탕으로 생산성 향상과 품질 향상을 위해 다양한 연구를 진행 중이다. 본 논문은 타이어 제조공정의 육안검사 단계에서 타이어 표면 결함을 검출하는 방법에 관한 연구로서 3D 카메라를 통해 취득한 깊이 이미지를 이용한 타이어 표면 결함 검출 방법을 소개한다. 본 연구에서 다루는 타이어 표면 깊이 이미지는 타이어 표면의 얕은 깊이로 인해 발생되는 낮은 깊이 대비와 데이터 취득 환경으로 인해 기준 깊이 값의 차이가 발생하는 문제가 있다. 그리고 제조업의 특성상 검출 성능과 함께 실시간으로 처리될 수 있는 성능을 지닌 알고리즘이 요구된다. 따라서, 본 논문에서는 타이어 표면 결함 검출 알고리즘이 복잡한 알고리즘 파이프라인으로 구성되지 않도록 상대적으로 단순한 방법들을 통해 깊이 이미지를 정규화하는 방법을 연구하였으며 검출 성능과 속도를 모두 만족할 수 있는 딥러닝 방법인 YOLO V3를 이용하여 일반적인 정규화 방법과 본 논문에서 제안하는 정규화 방법의 비교 실험을 진행하였다. 실험의 결과로 본 논문에서 제안한 정규화 방법으로 mAP 0.5 기준 약 7% 성능이 향상된 것을 확인하였으며 본 논문에서 제시한 방법이 효과적임을 보였다.

Color Line Scan Camera를 위한 고속 신호처리 하드웨어 시스템 구현 (Implementation of the high speed signal processing hardware system for Color Line Scan Camera)

  • 박세현;금영욱
    • 한국정보통신학회논문지
    • /
    • 제21권9호
    • /
    • pp.1681-1688
    • /
    • 2017
  • 본 논문에서는 FPGA와 Nor-Flash를 사용하여 컬러 라인 스캔 카메라를 위한 고속 신호처리 하드웨어 시스템을 구현하였다. 기존의 시스템에서는 소프트웨어를 기반으로 한 고속 DSP가 적용되어 왔고 주로 RGB 개별 논리에 의해 결함을 검출하는 방법이었지만 본 논문에서는 RGB-HSL 변환기, FIFO, HSL 풀-컬러 결함 디코더 및 이미지 프레임 버퍼로 구성된 하드웨어 기반의 결함 검출기를 제안하였다. 결함 검출기는 RGB에서 HSL로의 색상 공간 변환을 위한 하드웨어 기반 룩업테이블과 4K HSL 풀-컬러 결함 디코더로 구성되어 있다. 또한 단일 라인 데이터 기반의 로컬 픽셀 처리 대신 2차원 배열 구조의 이미지 단위 처리를 위해 라인 데이터 축적용 이미지 프레임을 포함한다. 설계된 시스템을 기존의 곡물 선별기에 적용하여 땅콩을 대상으로 선별해 본 결과 효과적임을 알 수 있었다.

교차 프로젝트 결함 예측을 위한 유사도 측정 기법 비교 연구 (A Comparative Study on Similarity Measure Techniques for Cross-Project Defect Prediction)

  • 류덕산;백종문
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권6호
    • /
    • pp.205-220
    • /
    • 2018
  • 소프트웨어 결함 예측은 결함이 자주 발생하는 모듈에 집중함으로써 소프트웨어 품질 보증 활동에 귀중한 프로젝트 리소스를 효과적으로 할당하는 데 도움이 될 수 있다. 회사 내에서 수집 된 충분한 기록 데이터를 사용하여 정확한 결함 발생 가능성이 높은 모듈 예측에 대해 WPDP (프로젝트 내 결함 예측)를 사용할 수 있다. 회사가 과거 데이터를 유지하지 못한 경우 CPDP (Cross-Project Defect Prediction) 메커니즘을 기반으로 오류를 예측하는 분류기를 만드는 것이 도움이 될 수 있다. CPDP는 다른 조직에서 수집 한 다른 프로젝트 데이터를 사용하여 분류기를 작성하기 때문에 정확한 분류기를 만드는데 가장 큰 장애물은 소스와 대상 프로젝트 간의 서로 다른 분포이다. 이 문제의 해결을 위해 효과적인 유사도 측정 기술을 식별하는 것이 중요하므로, 본 논문에서는 다양한 유사도 측정 기술을 CPDP 모델에 적용하여 성능을 비교한다. 유사도 가중치의 유효성을 평가하고, 통계적 유의성 검정 및 효과 크기 검정을 통해 결과를 검증한다. 실험 결과, k-Nearest Neighbor (k-NN), LOcal Correlation Integral (LOCI) 및 Range 방법이 유사도 측정 기술 중 상위 3 개에 속했고, 이들을 사용하는 CPDP 예측 성능이 WPDP의 성능과 유사하였다.

Magnetic Flux Leakage (MFL) based Defect Characterization of Steam Generator Tubes using Artificial Neural Networks

  • Daniel, Jackson;Abudhahir, A.;Paulin, J. Janet
    • Journal of Magnetics
    • /
    • 제22권1호
    • /
    • pp.34-42
    • /
    • 2017
  • Material defects in the Steam Generator Tubes (SGT) of sodium cooled fast breeder reactor (PFBR) can lead to leakage of water into sodium. The water and sodium reaction will lead to major accidents. Therefore, the examination of steam generator tubes for the early detection of defects is an important requirement for safety and economic considerations. In this work, the Magnetic Flux Leakage (MFL) based Non Destructive Testing (NDT) technique is used to perform the defect detection process. The rectangular notch defects on the outer surface of steam generator tubes are modeled using COMSOL multiphysics 4.3a software. The obtained MFL images are de-noised to improve the integrity of flaw related information. Grey Level Co-occurrence Matrix (GLCM) features are extracted from MFL images and taken as input parameter to train the neural network. A comparative study on characterization have been carried out using feed-forward back propagation (FFBP) and cascade-forward back propagation (CFBP) algorithms. The results of both algorithms are evaluated with Mean Square Error (MSE) as a prediction performance measure. The average percentage error for length, depth and width are also computed. The result shows that the feed-forward back propagation network model performs better in characterizing the defects.

CNN을 활용한 표면 결함 검출 (Surface Defect Detection Using CNN)

  • 강현우;김수빈;오준택;이창현;이현지;이상목;박승보
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.45-46
    • /
    • 2021
  • 본 논문에서는 제조산업의 제품 품질검사의 자동화를 위한 딥러닝 기법을 제안하고 모델의 성능 최적화를 위한 특징 추출 필터의 크기를 비교한다. 이미지 특징을 자동 추출할 수 있는 CNN을 사용하여 전문인력 없이 제품의 표면 결함을 검출하고 제품의 적합성을 판단할 수 있는 이미지 처리 알고리즘을 구축하고 산업 현장에 적용하기 위한 검증 지표로 검출 정확도와 연산속도를 측정하여 결함 검출 알고리즘의 성능을 확인한다. 또한 연산량에 따른 성능 비교를 위해 필터의 크기에 따른 CNN의 성능을 비교하여 결함 검출 알고리즘의 성능을 최적화한다. 본 논문에서는 커널의 크기를 다르게 적용했을 때 빠른 연산으로 높은 정확도의 검출 결과를 얻었다.

  • PDF

교차 프로젝트 결함 예측 성능 향상을 위한 효과적인 하모니 검색 기반 비용 민감 부스팅 최적화 (Effective Harmony Search-Based Optimization of Cost-Sensitive Boosting for Improving the Performance of Cross-Project Defect Prediction)

  • 류덕산;백종문
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권3호
    • /
    • pp.77-90
    • /
    • 2018
  • 소프트웨어 결함 예측(SDP)은 결함이 있는 모듈을 식별하기 위한 연구 분야이다. 충분한 로컬 데이터가 없으면 다른 회사에서 수집한 데이터를 사용하여 분류기를 구축하는 교차 프로젝트 결함 예측(CPDP)을 활용할 수 있다. SDP에 대한 대부분의 기계 학습 알고리즘은 서로 다른 값에 따라 예측 성능에 큰 영향을 미치는 하나 이상의 매개 변수를 사용한다. 본 연구의 목적은 CPDP의 예측 성능 향상을 위해 매개 변수 선택 기법을 제안하는 것이다. Harmony Search 알고리즘을 사용하여, 예측 어려움을 야기하는 클래스 불균형을 해결하는 방법인 비용에 민감한 부스팅의 매개 변수를 조정한다. 분포 특성에 따라 매개 변수 범위와 매개 변수 간의 제한 조건 규칙이 정의되어 하모니 검색 알고리즘에 적용된다. 제안된 접근법은 15개의 대상 프로젝트를 대상으로 3개의 CPDP 모델과 내부프로젝트 결함 예측(WPDP) 모델을 비교한다. 실험 결과는 제안된 방법이 클래스 불균형의 맥락에서 다른 CPDP 방법보다 성능이 우수하다는 것을 보여준다. 이전의 연구에서는 탐지 확률이 낮거나 오보 가능성이 높았으나 우리의 기법은 높은 PD와 낮은 PF를 제공하면서 높은 전체 성능을 보였다. 또한 WPDP와 비슷한 성능을 제공하였다.

Influence of sharp stiffness variations in damage evaluation using POD and GSM

  • Thiene, M.;Galvanetto, U.;Surace, C.
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.569-594
    • /
    • 2014
  • Damage detection methods based on modal analysis have been widely studied in recent years. However the calculation of mode shapes in real structures can be time consuming and often requires dedicated software programmes. In the present paper the combined application of proper orthogonal decomposition and gapped smoothing method to structural damage detection is presented. The first is used to calculate the dynamic shapes of a damaged structural element using only the time response of the system while the second is used to derive a reference baseline to which compare the data coming from the damaged structure. Experimental verification is provided for a beam case while numerical analyses are conducted on plates. The introduction of a stiffener on a plate is investigated and a method to distinguish its influence from that of a defect is presented. Results highlight that the derivatives of the proper orthogonal modes are more effective damage indices than the modes themselves and that they can be used in damage detection when only data from the damaged structure are available. Furthermore the stiffened plate case shows how the simple use of the curvature is not sufficient when analysing complex components. The combined application of the two techniques provides a possible improvement in damage detection of typical aeronautical structures.

무잡음 그룹검사에 대한 확률적 검출 알고리즘 (A Probabilistic Detection Algorithm for Noiseless Group Testing)

  • 성진택
    • 한국정보통신학회논문지
    • /
    • 제23권10호
    • /
    • pp.1195-1200
    • /
    • 2019
  • 본 논문은 그룹검사(Group Testing)에 대한 검출 알고리즘을 제안한다. 그룹검사는 다수의 샘플 중 극히 일부의 결함 샘플을 찾는 문제로써 이것은 압축센싱 문제와 유사하다. 본 논문에서는 잡음이 없는 그룹검사를 정의하고, 결함 샘플을 검출하기 위한 확률 기반의 알고리즘을 제안한다. 제안하는 알고리즘은 입력과 출력 신호 간 외부확률들이 서로 교환하여 출력 신호의 사후 확률이 최대가 되도록 구성한다. 그리고 검출 알고리즘에 대한 모의실험을 통해 그룹검사 문제에서 결함 샘플을 찾는다. 본 연구에 대한 모의시험 결과는 정보이론의 하한치와 비교하여 입력과 출력 신호 크기에 따라 실패확률이 얼마나 차이가 있는지 확인한다.