
교차 프로젝트 결함 예측 성능 향상을 위한 효과적인 하모니 검색 기반 비용 민감 부스팅 최적화 77

Effective Harmony Search-Based Optimization of Cost-Sensitive Boosting

for Improving the Performance of Cross-Project Defect Prediction

Duksan Ryu
†
⋅Jongmoon Baik

††

ABSTRACT

Software Defect Prediction (SDP) is a field of study that identifies defective modules. With insufficient local data, a company can

exploit Cross-Project Defect Prediction (CPDP), a way to build a classifier using dataset collected from other companies. Most machine

learning algorithms for SDP have used more than one parameter that significantly affects prediction performance depending on different

values. The objective of this study is to propose a parameter selection technique to enhance the performance of CPDP. Using a Harmony

Search algorithm (HS), our approach tunes parameters of cost-sensitive boosting, a method to tackle class imbalance causing the difficulty

of prediction. According to distributional characteristics, parameter ranges and constraint rules between parameters are defined and applied

to HS. The proposed approach is compared with three CPDP methods and a Within-Project Defect Prediction (WPDP) method over fifteen

target projects. The experimental results indicate that the proposed model outperforms the other CPDP methods in the context of class

imbalance. Unlike the previous researches showing high probability of false alarm or low probability of detection, our approach provides

acceptable high PD and low PF while providing high overall performance. It also provides similar performance compared with WPDP.

Keywords : Cost-Sensitive Boosting, Cross-Project Defect Prediction, Harmony Search, Search-Based Software Engineering,

Transfer Learning

교차 프로젝트 결함 예측 성능 향상을 위한 효과적인

하모니 검색 기반 비용 민감 부스팅 최적화

류 덕 산†⋅백 종 문††

요 약

소프트웨어 결함 예측(SDP)은 결함이 있는 모듈을 식별하기 위한 연구 분야이다. 충분한 로컬 데이터가 없으면 다른 회사에서 수집한 데이

터를 사용하여 분류기를 구축하는 교차 프로젝트 결함 예측(CPDP)을 활용할 수 있다. SDP에 대한 대부분의 기계 학습 알고리즘은 서로 다른

값에 따라 예측 성능에 큰 영향을 미치는 하나 이상의 매개 변수를 사용한다. 본 연구의 목적은 CPDP의 예측 성능 향상을 위해 매개 변수 선

택 기법을 제안하는 것이다. Harmony Search 알고리즘을 사용하여, 예측 어려움을 야기하는 클래스 불균형을 해결하는 방법인 비용에 민감한

부스팅의 매개 변수를 조정한다. 분포 특성에 따라 매개 변수 범위와 매개 변수 간의 제한 조건 규칙이 정의되어 하모니 검색 알고리즘에 적용

된다. 제안된 접근법은 15개의 대상 프로젝트를 대상으로 3개의 CPDP 모델과 내부프로젝트 결함 예측(WPDP) 모델을 비교한다. 실험 결과는

제안된 방법이 클래스 불균형의 맥락에서 다른 CPDP 방법보다 성능이 우수하다는 것을 보여준다. 이전의 연구에서는 탐지 확률이 낮거나 오보

가능성이 높았으나 우리의 기법은 높은 PD와 낮은 PF를 제공하면서 높은 전체 성능을 보였다. 또한 WPDP와 비슷한 성능을 제공하였다.

키워드 : 비용민감 부스팅, 교차프로젝트 결함 예측, 하모니 검색, 검색기반 소프트웨어 공학, 전이 학습

KIPS Tr. Software and Data Eng.
Vol.7, No.3 pp.77~90 pISSN: 2287-5905

1)

※ This research was supported by Basic Science Research Program through

the National Research Foundation of Korea (NRF) funded by the Ministry

of Education (NRF-2016R1D1A1A09917660, Artificial Intelligence-based

Quantitative Quality Prediction and Evaluation Technique for Software

Intensive System).

†정 회 원 : KAIST, School of Computing, Research Professor
††비 회 원 : KAIST, School of Computing, Professor

Manuscript Received : October 17, 2017
Accepted : December 9, 2017

* Corresponding Author : Duksan Ryu (dsryu@kaist.ac.kr)

1. Introduction

Software defect prediction (SDP) is an attractive field

of study identifies defective modules. Software quality

assurance resources for software inspection and testing are

usually limited and thus they should be allocated with

caution. Such valuable resources can be allocated effectively

to defective modules identified by SDP. With insufficient

https://doi.org/10.3745/KTSDE.2018.7.3.77

78 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제3호(2018. 3)

local data, a company can take advantage of Cross-Project

Defect Prediction (CPDP), a way to construct a classifier

using datasets collected from other companies. SDP has

been studied on the basis of various machine learning

algorithms. Most machine learning algorithms have used

more than one parameter that significantly affect prediction

performance depending on different values.

On software defect datasets, the ratio between the

defective instance and the non-defective instance is not

balanced. This problem called class imbalance causes the

difficulty of prediction. One of the main methods to address

class imbalance is cost-sensitive learning. Cost-sensitive

learning indicates that the costs of incorrectly classified errors

are non-uniformly treated while building a classification

model. In other words, the importance of class identification

is differently reflected into misclassification costs. In this

context, it is desired for a classifier to produce high

performance of the minority class (defect class) without

seriously worsening the performance of the majority class

(non-defect class) [1]. In cost-sensitive boosting methods,

misclassification costs are easily integrated into the weight

update formula. Most cost-sensitive boosting algorithms

have only taken into account Within-Project (WP) data

without external data. Ryu et al. [2] proposed a cost-

sensitive boosting method for CPDP that is called Transfer

Cost-Sensitive Boosting (TCSBoost) considering class

imbalance in CP settings. It extracted additional cost

parameters for instances with different distributional

characteristics. For different CPDP settings, parameters

should be tuned adaptively. If parameters can be adaptively

tuned depending on different CPDP settings, predictive

performance may be enhanced. In this study, we investigate

if our parameter tuning technique based on Harmony Search

[3] can provide high predictive performance in CP settings.

We explore the following research questions:

∙RQ1: Does Harmony Search technique effectively tune

parameters of cost-sensitive boosting for CPDP?

∙RQ2: Can the proposed method provide the predictive

performance comparable to within-project defect

prediction?

The objective of this research is to present a search-

based optimization method effective for CPDP. We propose

a novel approach called TCSBoost using Harmony Search

(TCSBoost.HS) that tunes parameters of a cost adjustment

function that significantly affect the performance of cost-

sensitive boosting in CP settings. We use Jureczko datasets

[4] for the experiments obtained from PROMISE repository

[5]. The parameters assigning the correct/incorrect classifi-

cation costs are related to the distributional characteristics

and class imbalance. Using such domain knowledge, the size

of the search space is reduced in the steps of initialization,

range settings, and relative value settings between param-

eters.

To evaluate prediction performance, TCSBoost.HS approach

is compared with TCSBoost and other classification

techniques in CP and WP settings. We performed a statistical

significance test and the effect size test. The experimental

results show that TCSBoost.HS provides better defect

prediction ability than CPDP models we compared with. In

particular, it shows predictive performance similar to WPDP.

As a result, our proposed approach can effectively help to

allocate testing or inspection resources on defect-prone

modules in CP settings.

The organization of the remaining sections is as follows.

As a background, Harmony Search is explained in section 2.

In section 3, we describe related work covering SDP and

parameter tuning. In section 4, the proposed HS based

optimization method is described. Section 5 includes the

details of the experimental setup. In section 6, the

experimental results are explained. In section 7, the threats

to validity are covered. In the last section, the conclusion is

summarized.

2. Harmony Search

Harmony Search (HS) is a music-inspired meta-heuristic

optimization algorithm. HS mimics the process of instrument

players searching the best harmony with their experience

and repeated practice while improvising. The algorithm is

first suggested by Geem et al. [3]. Since then, it has acquired

remarkable results in the field of combinatorial optimization.

The fundamental of HS is like a jazz improvisation.

Players try to make a harmony with each other. They tune

the pitch of the instruments based on their experiences or

randomly to find a better harmony. By this repeated practice,

the players reach to the best harmony that can please the

audiences.

Under this principle, HS finds the optimal solution of a

given problem through the following steps.

1) Initializes a problem and algorithm parameters

2) Initializes a harmony memory

3) Improvises a new harmony

4) Updates the harmony memory

5) Checks a stopping criterion

Table 1 shows the parameters of HS. Harmony Memory

Size (HMS) indicates the maximum size of the experiences

of players, representing Harmony Memory (HM). Remaining

parameters, Harmony Memory Considering Rate (HMCR),

Pitch Adjusting Rate (PAR), and Fret Width (FW) are used

교차 프로젝트 결함 예측 성능 향상을 위한 효과적인 하모니 검색 기반 비용 민감 부스팅 최적화 79

Parameter Description

Harmony Memory Size

(HMS)

The number of solution vectors

simultaneously handled

Harmony Memory

Considering Rate

(HMCR)

The rate (0≤HMCR≤1) where HS

picks one value randomly from HM

Pitch Adjusting Rate

(PAR)

The rate (0≤PAR≤1) where HS

tweaks the value which was

originally picked from memory

Maximum Improvisation

(MI)
The number of iterations

Fret Width

(FW)
The bandwidth of pitch adjustment

Table 1. Parameters of a Harmony Search Algorithm

to generate a new harmony. HMCR is a probability of

choosing a harmony from HM, and PAR is a probability to

adjust the pitch of chosen harmony. FW represents the

changing bandwidth of pitch adjustment. MI (Maximum

Improvisation) indicates the maximum number of iterations.

Based on the initialized value of HMS, HS generates the

candidate solutions and stores them in HM. The fitness of

each candidate is calculated by an objective function. Then,

a new harmony is created by 3 ways, according to the

parameters, HMCR and PAR.

∙ Random Playing: The new candidate solution is

randomly generated by the probability of (1-HMCR).

∙ Memory Consideration: The solution is randomly

selected from HM by the probability of HMCR and is

preserved as it is by the probability of (1-PAR).

∙ Pitch Adjusting: The solution is randomly selected from

HM by the probability of HMCR and is adjusted by the

probability of PAR.

After a new candidate solution is generated by one of

three ways described above, HM is updated. If the new

solution has a better objective function value than the value

of the worst candidate solution in HM’s objective function,

the new one replaces the old one. HS iterates the solution

generating and HM updating process until it reaches the

preset exit condition or the maximum iteration value.

3. Related Work

3.1 Software Defect Prediction

Software Defect Prediction (SDP) aims at the optimal

allocation of software quality assurance resources via the

correct identification of defective modules. Most SDP studies

are based on machine learning algorithms [6–11]. Not only

Within-Project Defect Prediction (WPDP) using local data to

build a classifier but also Cross-Project Defect Prediction

(CPDP) using cross-project data to construct a classifier

have attracted many researchers.

Zimmermann et al. [12] presented that only 21 among 622

CPDP cases were successful. They asserted that the

identification of the data and process characteristics was

crucial for dealing with different distributions between the

source project and the target project. They also suggested

CPDP issues be investigated by more researchers.

Turhan et al. [13] proposed the relevancy filtering method

based on the nearest neighbor for CPDP. They indicated that

Within-Project (WP) data were more useful to build a

classifier compared to Cross-Project (CP) data.

He et al. [14] employed an example selection to deal with

CPDP problems. They used 16 distributional characteristics

including mode, median, mean, range, and variance for

experiments. They asserted that predictive performance was

closely related to such distributional characteristics.

Ma et al. [15] studied an approach called Transfer Naïve

Bayes (TNB) for CPDP. As a way of measuring the similarity

between projects, the range was used. The similarity

weights calculated were used for building their proposed

model.

Ryu et al. [16] proposed a boosting method for CPDP

considering different distributions and class imbalance

together. Asymmetric misclassification costs and similarity

weights from the distributional characteristics of a source

dataset and a target dataset were derived and different

resampling mechanisms depending on them were used. The

range was used to compute the similarity weights.

Ryu et al. [17] presented an approach called a Hybrid

Instance Selection using Nearest-Neighbor (HISNN) method

for CPDP with consideration of class imbalance. It adopted

a selective learning technique based on local knowledge. If

local knowledge is strong enough, k-nearest neighbor

insensitive to class imbalance was used to predict defects.

Otherwise, naïve Bayes using global knowledge was used.

Ryu et al. [2] presented a cost-sensitive boosting method

for CPDP that is called Transfer Cost-Sensitive Boosting

(TCSBoost) considering class imbalance in CP settings. It

applied cost-sensitive learning and transfer learning together

to CP data. It extracted additional cost parameters for

instances with different distributional characteristics.

Canfora et al. [18] presented a genetic algorithm-based

multi-objective classification model called a multi-objective

defect predictor (MODEP). Their approach aimed to maximize

the number of defect-prone modules (effectiveness) whereas

minimizing lines of code to be inspected (inspection cost). It

allowed classifiers to provide a compromise between two

objectives.

80 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제3호(2018. 3)

Fig. 1. Overall Process of CPDP using Harmony Search Optimization

Ryu and Baik [19] proposed multi-objective naïve Bayes

classification techniques with consideration of the class

imbalance problem in CP settings. The multi-objective

optimization functions were formulated based on class

imbalance. The class probability and the feature weights

were parameterized and then they are searched by Harmony

Search. They showed that their approaches could be applied

to various prediction requirements in CP settings.

According to previous CPDP studies, the identification of

distributional properties between a source project and a target

project played an important role in the success of CPDP. In

addition, recent studies showed that the prediction perfor-

mance of CPDP can be enhanced by class imbalance learning.

3.2 Parameter Optimization

Harman et al. [20] reviewed various optimization techniques

in software engineering including Simulated Annealing, and

Genetic Algorithm. The authors presented limitations of

Search-Based Software Engineering (SBSE) and methods to

overcome them. They asserted that the search space be

reduced using domain knowledge whenever possible.

Merler et al. [21] proposed a method to tune the par-

ameters of a cost-sensitive boosting algorithm. A bisection

method was used to optimize the performance toward the

sensitivity and specificity. The weights for negatives and

positives are updated differently at each step. But it didn’t

address different dataset distributions.

Wang and Yao [22] proposed a variant of AdaBoost.NC

[23] using a Negative Correlation learning algorithm. During

the training of a boosting algorithm, a parameter was

automatically configured. The dynamic version showed

better performance than the original AdaBoost.NC.

Manjarres et al. [24] reviewed application portfolio of the

music-inspired Harmony Search algorithm used in various

domains including computer science, electrical engineering

and civil engineering. They pointed out, as a meta-heuristic

algorithm, it was successfully applied to solve computa-

tionally expensive optimization problems.

In this study, Harmony Search was applied to optimize

the parameters of cost-sensitive boosting for CPDP.

Additionally, it is adjusted to decrement the search space

using characteristics of dataset distributions and class

imbalance.

4. Harmony Search Based Parameter Optimization

We propose a parameter optimization technique using

Harmony Search for Transfer Cost-Sensitive Boosting

(TCSBoost) approach. This approach aims to identify optimal

parameters and efficiently decreasing the search space by

employing domain knowledge drawn from distributional

properties and class imbalance. Fig. 1 illustrates the overall

defect prediction process using a Harmony Search algorithm.

After the preparation of defect data for training and

testing, training data are resampled with SMOTE [25] and

Tomek Links [26] to deal with class imbalance. Then, the

similarity weight using the range method [16] is calculated

and the parameters are tuned via Harmony Search. Next, the

TCSBoost model is built and tested using target data.

Finally, the performance of prediction is evaluated with four

performance measures.

교차 프로젝트 결함 예측 성능 향상을 위한 효과적인 하모니 검색 기반 비용 민감 부스팅 최적화 81

4.1 Preparing Defect Dataset

Source and target project data are arranged as a training

set and a test set respectively. If an example has at least a

bug, it is labelled as buggy. If it has no bug, it is labelled

as clean.

4.2 Resampling with SMOTE and Tomek Link

SMOTE (Synthetic Minority Over-sampling Technique)

[25] and Tomek links [26] are used in our approach to

represent the defective instances better. SMOTE, a way of

over-sampling the minority class, generates synthetic

minority class instances instead of duplicating existing

instances. Tomek links can be used to under-sample

instances. They only identify instances close to the class

boundary. When the majority class instances close to the

class boundary are under-sampled, overlapping around the

class boundary can be reduced. We performed SMOTE and

then Tomek link-based under-sampling. This can increase

the performance of the Probability of Detection (PD)

although the Probability of a False alarm (PF) increases. PD

and PF are explained in detail in the later phase.

4.3 Similarity Weight Computation

In this phase, the similarity weight is computed to identify

the distributional characteristics between source data and

target data. This method is used in several CPDP studies [2],

[15], [16], [27].

Suppose  is the jth attribute of  , given a sequence


 

⋯. The maximum and minimum value of jth

attribute in the test data are obtained as follows:݆݉ܽݔ ൌ max ܽ1݆, ܽ2݆, … , ݆ܽ݉ ,	݆݉݅݊ ൌ min ܽ1݆, ܽ2݆, … , ݆ܽ݉ ,

where m is the number of the test instances, k is the number

of attributes, and   …. The vector  

⋯ has the maximum value of the attribute

on the test data and the vector   ⋯ has

the minimum value of the attribute on the test data. Then,

the similarity weight of each training instance is calculated

by the following:

 ∑  
 , (1)

where  is the th attribute of instance  and


     ≤ ≤

 

4.4 Transfer Cost-Sensitive Boosting Technique

The overall process of TCSBoost only excludes the step

of Harmony Search Optimization in Fig. 1. TCSBoost

addresses class imbalance between the defect class and the

non-defect class as well as feature distributional differences

between a source project and a target project. Algorithm 1

shows the TCSBoost algorithm.

Source project data (S), a small amount of target project

data (T), and the similarity weight (SW) are input

parameters. Firstly, source data and target data are

assembled together as a training set. Secondly, the iteration

of the boosting algorithm is performed. The data weight

vector (wn) is used by the base classifier (h) identifying

weighted instances during training.

AdaCost [28] only deals with the class imbalance. By

adapting a cost adjustment function for CPDP, TCSBoost

addresses not only the class imbalance but also the

distributional characteristics. Classification costs are assigned

differently according to the similarity between a training set

and a test set.

The cost adjustment function, (n) is depicted as (n) =

(sign(tn, hm), cn), where sign(tn, hm) is positive for correct

classification (+) and negative for incorrect classification (-).

82 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제3호(2018. 3)

Distribution
Cost adjustment

function
Class Effect Weighting

Similar

distribution

+(c) =

-1․p2․c + p3

> 0

Positive
Decrease

weight
Small

Negative
Decrease

weight
Medium

-(c) = p4․c

> 0

Positive
Increase

weight
Large

Negative
Increase

weight
Medium

Different

distribution

+(c) =

-1․p5․c + p6

> 0

Positive
Decrease

weight
Small

Negative
Decrease

weight
Medium

-(c) = p7․c -

p8 < 0

Positive
Decrease

weight
Small

Negative
Decrease

weight
Medium

Table 2. Effect of Cost Adjustment FunctionThe cost adjustment function of TCSBoost is as follows:

∙ The cost adjustment function for the instances with the

same or similar distribution

+(c) = -0.25․c + 0.25

-(c) = 0.25․c

∙ The cost adjustment function for the instances with the

different distribution

+(c) = -0.25․c + 0.25

-(c) = 0.25․c - 0.5

The previous study proposing TCSBoost demonstrated

how small amount of WP data (target project data) can be

used together with CP data (source project data) in the

boosting algorithm. In order for WP data to be used as

training data, more time and efforts for testing and

inspection are required to label them as buggy or clean. In

this study, however, we build a boosting model using only

CP data without including WP data. Thus, our approach can

be utilized early without additional efforts.

4.5 Harmony Search-Based Optimization Technique

Because the cost adjustment function of TCSBoost mainly

affects the defect prediction performance, we aim to optimize

its parameters. The parameters to optimize are identified

considering class imbalance and distributional characteristics.

Because the cost factor of the minority class is set to 1.0 as

Sun et al. did [29], it is not considered as a parameter to

tune. The parameter variables identified to tune are from p1

to p8 as follows:

∙ The cost factor of the majority class: p1

∙ The cost adjustment function for the instances with the

similar distribution

+(c) = -1․p2․c + p3

-(c) = p4․c

∙ The cost adjustment function for the instances with the

different distribution

+(c) = -1․p5․c + p6

-(c) = p7․c - p8

Table 2 shows the effect of a cost adjustment function we

adopted in our approach based on the weight update rule of

TCSBoost. For the source data belonging to the similar

distribution, the weight of instances predicted correctly is

decreased and the weight of instances predicted incorrectly

is increased. In the case of true prediction, we decrease the

weight of True Positives more conservatively than those of

True Negatives. In the case of false prediction, the weights

of False Negatives are increased more than those of False

Positives. For the source data belonging to the different

distribution, we decrease the weight of instances classified

correctly and decrease the weight of instances classified

incorrectly. In the case of true prediction, the weights of

True Positives are decreased more than those of True

Negatives. In the case of false prediction, the weights of

False Negatives are decreased more conservatively than

those of False Positives.

Harman et al. [20] presented SBSE limitations and

techniques to overcome them. They guided domain knowledge

should be employed whenever possible. In particular, when

the fitness function is too computationally expensive, the size

of the search space can be efficiently reduced by utilizing

domain knowledge. In this study, several parts that domain

knowledge can be used are identified. The lower/upper

bounds of the variable can be enforced with several

constraints drawn from distributional characteristics. Such

constraints can help to reduce the size of the search space

of a HS algorithm. Rationale of constraints is based on the

mechanisms addressing the different correct/incorrect

classification costs between the majority class and the

minority class, and different distributions between a source

project and a target project.

Table 3 defines the search space where HS aims to find

an optimal parameter configuration. The above parameters

of TCSBoost.HS (i.e., from p1 to p8) have the range in [0,1].

To simplify a HS algorithm, they are replaced into integer

values by multiplying 10 (i.e., from Hp1 to Hp8). All

variables can have a value ranging from 1 to 10. Based on

distributional characteristics, ranges satisfying all constraints

교차 프로젝트 결함 예측 성능 향상을 위한 효과적인 하모니 검색 기반 비용 민감 부스팅 최적화 83

from Hp1 to Hp8 can be obtained. We further reduce the

range considering the constraints and the properties of the

parameters. Compared to the other parameters, Hp5 and Hp7

need to have smaller values, so the range from 1 to 5 is

chosen. The other values are selected with the middle range

(from 3 to 7) because high value of each parameter can

increase/decrease the weight significantly during iteration

and may cause overfitting.

Algorithm 2 describes the Harmony Search algorithm.

After the parameters of HS are defined, Harmony

Memory (HM) is initialized before running the main loop.

It has the following form in the case of the seven

variables and HMS = n.

Originally, the entries of HM are randomly configured. In

our experiments, as part of decreasing the search space, HM

is initialized like the following:

The initialization of HM is crucial to reduce the size of

the search space because initial parameter values act as a

baseline of the performance. By considering different

impacts of class imbalance of each dataset, the whole range

of Hp1 is covered. The chosen values of the remaining

parameters (from Hp2 to Hp8) are based on constraints

derived from the distributional properties between a training

set and a test set. They are the median values of the

reduced range in Table 3.

Memory consideration means that the algorithm

randomly selects a note stored in HM with the probability

of 1-PAR. Pitch adjusting indicates that the algorithm

randomly adjusts the pitch slightly within +/- FW. It should

ensure that constraints and lower/upper bounds are

satisfied. Random playing indicates that the algorithm

randomly selects any pitch within lower/upper bounds.

Constraints and lower/upper bounds are checked to be

satisfied. In the Harmony Memory update step, the

algorithm checks whether the new harmony drawn from the

above methods is better than the worst. Finally, the

algorithm returns the best harmony stored in HM.

As a fitness function, we compute the weighted

geometric mean (WG-mean) value after running TCSBoost

with the eight parameters. WG-mean is explained in the

phase of performance report in detail. At this time, source

project data are divided into training data and validation

data.

To select validation data, we employed the technique used

by Ryu et al. [16]. In this method, source instances similar

to target data are intended to be evenly distributed into the

training set and the validation set. The process of the

validation data selection is shown in Fig. 2. (1) Input data

are split in 50:50 randomly. (2) Each half set is sorted by the

weight in descending order and data with the high weight

are chosen as validation data. Two fifth of a half set are

chosen for validation data. Thus, a fifth of the total input

data are employed as a validation set. The remaining instances

are chosen as a training set.

The entire source project data and the parameters

identified after the optimization are used as input data for

building a final TCSBoost model.

Fig. 2. Validation Data Selection

4.6 Classification Prediction

In this phase, using the previously built boosting model,

each instance of target project data is classified as buggy or

clean. The feature space of target data is identical to that of

source data.

84 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제3호(2018. 3)

Variable Constraints Rationale of constraints

Range

satisfying all

constraints

Reduced

range

Hp1 1≤Hp1≤10 No constraints 1～10 1～10

Hp2 1<Hp2<10 1≤Hp5<Hp2 & Hp2<Hp3≤10 2～9 3～7

Hp3 1<Hp2<Hp3≤10

1≤Hp5<Hp2

To decrease the weights of similar instances correctly predicted,

+(c) = -1․p2․c + p3 > 0. Thus, p3 > p2․c.

To satisfy all the range of c, p3 > p2.

3～10 3～7

Hp4 1<Hp4≤10 1≤Hp7<Hp4 2～10 3～7

Hp5 1≤Hp5<Hp2<10

Instances in different distribution are less valuable than those in

similar distribution. Compared to similar instances, this constraint

decreases more weight of different instances.

For example, when c = 1, p3 = 1, p6 = 1, p2 = 0.5, and p5 = 0.1,

+(c) = -1․p2․c + p3 = 0.5, and the weight = 
 ⋅

+(c) = -1․p5․c + p6 = 0.9, and the weight = 
 ⋅

1～8 1～5

Hp6 1≤Hp5<Hp6≤10

To decrease the weight of different instances correctly predicted,

+(c) = -1․p5․c + p6 > 0. Thus, p6 > p5․c. To satisfy all the

 range of c, p6 > p5.

2～10 3～7

Hp7 1≤Hp7<Hp4≤10

Instances in different distribution are less valuable than those in

similar distribution. The decreasing weight of different instances is

relatively higher than the increasing weight of similar instances.

For example, when c = 1, p8 = 1, p4 = 0.5, and p7 = 0.1,

-(c) = p4․c = 0.5, and the weight = 
⋅

-(c) = p7․c - p8 = -0.9, and the weight = 
 ⋅

1～9 1～5

Hp8 1≤Hp7<Hp8≤10

To decrease the weight of different instances that are incorrectly

classified, -(c) = p7․c - p8 < 0. Thus, p8 > p7․c. To satisfy

all the range of c, p8 > p7.

2～10 3～7

Table 3. Parameter for Optimization

Predicted class

Buggy Clean

Actual

class

Buggy TP (True Positive) FN (False Negative)

Clean FP (False Positive) TN (True Negative)

Table 4. Confusion Matrix

4.7 Performance Report

Software defect datasets tend to have the class imbalance

issue. The learner constructed on such datasets is mostly

evaluated by the overall and individual performance together.

The individual performance on the defect class is typically

assessed by the Probability of Detection (PD) and the

Probability of a False alarm (PF). Table 4 shows a confusion

matrix. True Positive (TP) is the number of buggy instances

predicted correctly as buggy. False Positive (FP) is the

number of clean instances predicted as buggy. True

Negative (TN) is the number of clean instances predicted

correctly as clean. False Negative (FN) is the number of

buggy instances predicted as clean. PD indicates the ratio

of appropriate instances among all the retrieved instances.

PD is defined as:  


. PF represents the

proportion of clean instances predicted as buggy. PF is

defined as:  


. The lower PF value is better in

contrast to PD.

Geometric mean (G-mean) and Balance are useful for

assessing the overall performance of predictors under the

imbalanced context. Balance is a Euclidean distance from the

ideal point (PD=1, PF=0) to real (PD, PF) point. Balance is

defined as:   

 

. G-mean

indicates the geometric mean of recall values from the

non-defect class and the defect class. G-mean is described

as: G-mean = . They aim to show how well a

classifier can balance the performance between the clean

class and the buggy class. In contrast to PF, three metrics

including PD, Balance and G-mean are better when they are

higher.

WG-mean = 


   
    

where WPD and W1-PF are the weight for PD and 1-PF

respectively. For instance, suppose WPD = 2 and W1-PF = 1,

WG-mean =   . PD has greater value than

교차 프로젝트 결함 예측 성능 향상을 위한 효과적인 하모니 검색 기반 비용 민감 부스팅 최적화 85

Project # Instances # Buggy % Buggy Description

ant 125 20 16 Open-source

arc 234 27 11.5 Academic

camel 339 13 3.8 Open-source

e-learning 64 5 7.8 Academic

jedit 272 90 33.1 Open-source

log4j 135 34 25.2 Open-source

lucene 195 91 46.7 Open-source

poi 237 141 59.5 Open-source

prop-6 660 66 10 Proprietary

redaktor 176 27 15.3 Academic

synapse 157 16 10.2 Open-source

systemdata 65 9 13.8 Open-source

tomcat 858 77 9 Open-source

xalan 723 110 15.2 Open-source

xerces 162 77 47.5 Open-source

Table 5. Projects in the Jureczko Dataset

Features

weighted methods per class (WMC), depth of inheritance tree

(DIT), number of children (NOC), coupling between object classes

(CBO), response for a class (RFC), lack of cohesion in methods

(LCOM), lack of cohesion in methods (LCOM3), number of public

methods (NPM), data access metric (DAM), measure of aggregation

(MOA), measure of functional abstraction (MFA), cohesion among

methods of class (CAM), inheritance coupling (IC), coupling

between methods (CBM), average method complexity (AMC),

afferent couplings (Ca), efferent couplings (Ce), maximum

McCabe’s cyclomatic complexity (Max(CC)), average McCabe’s

cyclomatic complexity (Avg(CC)), lines of code (LOC)

Table 6. Features of the Jureczko Datasets1-PF in the context of class imbalance. In line with this,

WG-mean allows us to give more weights to PD while

tuning the parameters of TCSBoost.

5. Experimental Setup

We answer the two research questions by conducting the

comparative experiments. In order to figure out the effec-

tiveness of using WG-mean, the experiments are performed

with different weights of PD and 1-PF, i.e. 1.0:1.0 and 1.2:1.0

respectively. Our approaches are compared with Na?ve

Bayes, Naive Bayes with a k-Nearest Neighbor filter [13]

and TCSBoost under CP settings for RQ1. For RQ2, we

investigate if the performance of our method is similar to

that of Naive Bayes under WP settings.

Jureczko datasets are used to compare our method with

other classifiers, because they are popularly used in the SDP

studies. Balance and G-mean are effective performance

metrics under the imbalanced context, because they are

computed with the values of both PD and PF. The overall

performance (e.g., Balance and G-mean) and the defect

detection rate (PD) have a trade-off relationship [22].

Therefore, it is crucial to obtain a classifier producing high

accuracy for the minority class while the accuracy of the

majority class is not severely lowered. We formulate the

following hypotheses to answer RQ1 and RQ2.

∙ H10: The performance of TCSBoost.HS is not better

than those of other CPDP methods.

∙ H1A: The performance of TCSBoost.HS is better than

those of other CPDP methods.

∙ H20: The performance of TCSBoost.HS is not similar to

that of within-project defect prediction.

∙ H2A: The performance of TCSBoost.HS is similar to

that of within-project defect prediction.

5.1 Datasets for Experiments

The Jureczko datasets [4] contain the instances represented

with 20 static code attributes and 1 class label indicating

whether the instance is defective or non-defective. 15 datasets

were chosen from PROMISE repository [5] as Ryu et al. [2]

did. They contain 11 open-source projects, 3 academic projects

and a proprietary project. In Table 5, the properties of each

project are explained. Table 6 shows the list of features of the

Jureczko datasets used in the experiments.

5.2 CPDP and WPDP Settings

A dataset was chosen to be target data (for testing). The

remaining datasets were utilized as source data (for training).

Each experiment of CPDP was conducted 30 times, iteratively.

For WPDP settings, a stratified M x N (M=6, N=5) fold cross

validation strategy is employed.

5.3 Classification Models

In the cases of TCSBoost and TCSBoost.HS, Naive Bayes

is used as a base learner. We used the implementation of the

WEKA machine learning toolkit [30]. All of training and test

data were min-max normalized, indicating that the range of

features is rescaled to scale the range in [0, 1].

To compare the predictive performance, we included other

learning algorithms, i.e., Naive Bayes under CP settings (CP

NB), Naive Bayes with a kNN filter (CP NB+NN) and Naive

Bayes under WP settings (WP NB). Naive Bayes is selected

because it generally produces high prediction performance in

Software Defect Prediction studies [6]. A log-filter was applied

to training and test data before running the three models.

5.4 Parameter Setup

In the boosting algorithm, an empirical user-defined

parameter, Lambda (λ), is utilized for the penalty magnitude

86 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제3호(2018. 3)

Target

Data

CP NB CP NB+NN TCSBoost
TCSBoost.HS

(WPD:W1-PF=1:1)

TCSBoost.HS

(WPD:W1-PF=1.2:1)
WP NB

PD PF PD PF PD PF PD PF PD PF PD PF

ant 1 0.666 0.6 0.361 0.8 0.295 0.9 0.528 0.9 0.556 1 0.476

arc 0.555 0.444 0.629 0.512 0.444 0.135 0.592 0.376 0.629 0.398 0.833 0.542

camel 0.692 0.561 0.692 0.619 0.538 0.168 0.846 0.455 0.846 0.47 0.666 0.461

e-learning 0.8 0.372 1 0.525 0.6 0.067 0.6 0.237 0.7 0.254 0 0.272

jedit 0.9 0.609 0.844 0.494 0.433 0.137 0.6 0.31 0.6 0.318 0.944 0.444

log4j 0.794 0.287 0.941 0.663 0.352 0.059 0.705 0.188 0.823 0.252 1 0.6

lucene 0.714 0.528 0.648 0.317 0.373 0.144 0.692 0.336 0.692 0.336 0.777 0.428

poi 0.829 0.572 0.865 0.604 0.695 0.354 0.761 0.468 0.773 0.51 0.892 0.736

prop-6 0.863 0.653 0.651 0.378 0.439 0.227 0.712 0.451 0.727 0.471 0.615 0.331

redaktor 1 0.758 1 0.859 0.555 0.201 0.925 0.697 0.925 0.788 1 0.8

synapse 0.937 0.709 0.937 0.673 0.75 0.241 0.875 0.716 0.875 0.751 0.708 0.438

systemdata 0.777 0.553 0.777 0.464 0.444 0.089 0.666 0.214 0.666 0.232 0.5 0.272

tomcat 0.857 0.466 0.233 0.23 0.74 0.227 0.805 0.385 0.831 0.389 0.866 0.377

xalan 0.872 0.561 0.936 0.65 0.745 0.451 0.8 0.526 0.809 0.533 0.863 0.485

xerces 0.402 0.6 0.415 0.6 0.311 0.247 0.35 0.341 0.35 0.382 0.612 0.205

Median 0.829 0.561 0.777 0.525 0.538 0.201 0.712 0.385 0.773 0.398 0.833 0.444

Table 8. The Median PD & PF Performance of Classification Models

Parameter Setting

Harmony Memory Size (HMS) 10

Harmony Memory Considering Rate

(HMCR)
0.8

Pitch Adjusting Rate (PAR) 0.4

Maximum Improvisation (MI) 10

Fret Width (FW)
10% of total value

range

Table 7. Parameter Setting of Harmony Search

during each repitition. The value of λ is set to 0.5 to simplify

the usage of all boosting algorithms. The maximum number

of iterations (M) of TCSBoost and TCSBoost.HS algorithms

is set to 30. In the TCSBoost algorithm, the cost factor of

the minority class is fixed as 1.0. For the majority class, it

is set to 0.5. Table 7 describes the parameter values of

Harmony Search used for the experiments. Recommended

parameter settings [31, 32] are as follows. HMS = 30～100,

HMCR = 0.7～0.95, PAR = 0.1～0.5, and FW = 1～10%. In our

approach, the value of HMS is set to 10 considering efficiency.

6. Experimental Results

Tables 8 and 9 show PD, PF, G-mean and Balance values

of classifiers in CP and WP settings. The best performing

cases are marked in boldface.

Table 8 describes the median PD and PF values of

classifiers. In Fig. 3, a scatter plot is illustrated using median

PF and PD values of six classifiers over fifteen datasets. The

ideal value of PD and PF is 1 and 0 respectively. As such,

the better classifier has many points located at the bottom

right of the regions. While CP NB produces high PD (0.829),

it produces the worst PF (0.561). Therefore, Fig. 3 shows

most of the points are placed at the top right of the regions.

CP NB+NN filters irrelevant source instances out through

the nearest-neighbor filter. This results in reducing PF,

but it is still high (0.525). TCSBoost, two TCSBoost.HS

models and WP NB show more balanced performance

withregards to PD and PF. TCSBoost shows the best PF

(0.201) and the worst PD (0.538). Two Harmony Search

based approaches show higher PD than TCSBoost while

showing worse PF rates. Particularly, when WPD is larger

than 1, PD is considerably improved compared to

TCSBoost. Two TCSBoost.HS models show worse PD and

better PF than WP NB. The practically useful predictor

Fig. 3. Scatter Plot of Median PF & PD Values of Six

Classifiers Over 15 Datasets

교차 프로젝트 결함 예측 성능 향상을 위한 효과적인 하모니 검색 기반 비용 민감 부스팅 최적화 87

Target

Data

CP NB CP NB+NN TCSBoost
TCSBoost.HS

(WPD:W1-PF=1:1)

TCSBoost.HS

(WPD:W1-PF=1.2:1)
WP NB

G B G B G B G B G B G B

ant 0.577 0.528 0.618 0.618 0.75 0.747 0.66 0.621 0.634 0.599 0.654 0.619

arc 0.555 0.555 0.554 0.553 0.619 0.595 0.601 0.6 0.602 0.6 0.58 0.552

camel 0.551 0.547 0.513 0.51 0.669 0.652 0.675 0.659 0.685 0.654 0.593 0.572

e-learning 0.708 0.7 0.688 0.628 0.747 0.713 0.691 0.682 0.691 0.682 0 0.283

jedit 0.592 0.562 0.653 0.633 0.611 0.587 0.639 0.638 0.639 0.638 0.72 0.684

log4j 0.752 0.75 0.562 0.529 0.576 0.54 0.738 0.73 0.757 0.746 0.617 0.563

lucene 0.58 0.574 0.665 0.665 0.565 0.545 0.673 0.671 0.677 0.676 0.654 0.648

poi 0.595 0.577 0.585 0.562 0.669 0.669 0.631 0.62 0.615 0.605 0.503 0.477

prop-6 0.547 0.528 0.636 0.636 0.582 0.572 0.625 0.621 0.62 0.614 0.628 0.626

redaktor 0.491 0.463 0.375 0.392 0.666 0.654 0.528 0.503 0.442 0.439 0.431 0.425

synapse 0.522 0.496 0.553 0.521 0.754 0.754 0.5 0.485 0.478 0.466 0.664 0.629

systemdata 0.589 0.578 0.645 0.636 0.636 0.602 0.694 0.689 0.694 0.689 0.603 0.597

tomcat 0.676 0.655 0.424 0.434 0.756 0.755 0.711 0.699 0.707 0.695 0.722 0.709

xalan 0.618 0.593 0.571 0.537 0.639 0.633 0.619 0.601 0.615 0.6 0.665 0.638

xerces 0.401 0.401 0.407 0.407 0.484 0.482 0.475 0.476 0.471 0.473 0.688 0.682

Median 0.58 0.562 0.571 0.553 0.639 0.633 0.639 0.621 0.634 0.614 0.628 0.619

Table 9. The Median G-mean & Balance Performance of Classification Models

TCSBoost.HS

(WPD=1) vs.
CP NB

CP

NB+NN
TCSBoost WP NB

PD
p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 0.35 0.42 0.77 0.37

PF
p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistics 0.23 0.30 0.86 0.41

G-mea

n

p-value <<0.001 <<0.001 0.08 0.31

A-statistics 0.68 0.71 0.46 0.51

Balanc

e

p-value <<0.001 <<0.001 0.4 0.002

A-statistic 0.70 0.72 0.48 0.55

Table 10. The Comparison of TCSBoost.HS (WPD=1) with

Classification Models

TCSBoost.HS

(WPD=1.2) vs.
CP NB

CP

NB+NN
TCSBoost WP NB

PD
p-value <<0.001 0.13 <<0.001 <<0.001

A-statistic 0.40 0.47 0.80 0.41

PF
p-value <<0.001 <<0.001 <<0.001 0.07

A-statistics 0.27 0.34 0.89 0.46

G-mean
p-value <<0.001 <<0.001 0.01 0.92

A-statistics 0.66 0.68 0.45 0.50

Balance
p-value <<0.001 <<0.001 0.04 0.08

A-statistic 0.67 0.69 0.46 0.53

Table 11. The Comparison of TCSBoost.HS (WPD=1.2) with

Classification Models

should produce high performance for the defect class

without worsening the performance of the non-defect class,

indicating that acceptably low PF and high PD values are

preferred.

In Table 9, the median Balance and G-mean values of

each model on the datasets are shown. In general two

TCSBoost.HS models outperform other classification models.

CP NB and CP NB+NN produce Balance and G-mean values

lower than 0.6 respectively. TCSBoost.HS using WPD=1

shows the best performance (G-mean:0.661, Balance:0.657).

The following research questions are analyzed in terms of

the class imbalance.

∙ RQ1: Does Harmony Search technique effectively tune

parameters of cost-sensitive boosting for CPDP?

∙ RQ2: Can the proposed method provide the predictive

performance comparable to within-project defect

prediction?

Previous researches [8, 33] suggested the way to assess

the variability of the classifiers across multiple runs. The

first, second (median) and third quartile of each CP or WP

case are computed and sorted by their medians. Mini boxplot

is utilized to display them. The first-third quartile range is

represented by a bar while the median is marked as a circle.

The minimum and maximum values are not displayed. The

30 points of each target project obtained by repetition are

merged on the basis of each performance measure. The first,

second and third quartile are calculated by using the 450

points of 15 target projects.

To compare the performance between two classifiers, two

methods are applied. The Wilcoxon rank-sum test [34] is

carried out at a 5% significance level as a statistical

significance test. As a way to assess the magnitude of the

improvement, A-statistics effect size test [35] recommended

by [36] is conducted. According to the guidelines from [35],

A-statistic of greater than 0.64 for PD, Balance and G-mean

(or less than 0.36 for PF) means a medium effect size.

Fig. 4 illustrates mini boxplots of median PD, PF, Balance

and G-mean values of six classifiers over 15 projects sorted

88 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제3호(2018. 3)

Fig. 4. Mini Plot of Median PD, PF, G-mean and Balance Values of Six Classifiers Over 15 Datasets

by median. With regards to PD, WP NB shows the best

performance. TCSBoost shows the lowest PD performance.

TCSBoost.HS shows better PD performance as the weight of

PD used in the fitness function increases. As of PF, TCSBoost

shows the best performance. TCSBoost.HS models show

better PF performance than WP NB. With regards to Balance

and G-mean, TCSBoost and TCSBoost.HS models are

similar to WP NB.

Tables 9-10 describe the comparison of TCSBoost.HS

with other classifiers using the Wilcoxon rank-sum test and

A-statistics effect size test. The boldface indicates

TCSBoost.HS is better with p-value < 0.05 or A-statistics

> 0.64 (A-statistics < 0.36 for PF).

Table 10 shows the comparison of TCSBoost.HS using

WPD = 1 and W1-PF = 1 with other classifiers. In cases of CP

NB and CP NB+NN, the Wilcoxon rank-sum test indicated

that the difference in PF, Balance and G-mean was

statistically significant having p-val << 0.001. The effect

size for PF, Balance and G-mean is 0.10, 0.70 and 0.69

against CP NB and 0.14, 0.73 and 0.73 against CP NB+NN

respectively, indicating a medium size effect. In terms of

TCSBoost, the Wilcoxon rank-sum test indicated that the

difference in Balance and G-mean was not statistically

significant having p-val > 0.05. The difference in PD

between TCSBoost.HS and TCSBoost was statistically

significant having p-val < 0.05.

However, the effect size is 0.60 meaning a small effect. In

terms of WP NB, the Wilcoxon rank-sum test indicated that

the difference in Balance and G-mean was statistically

significant having p-val < 0.05. But the effect size is small

in each case (G-mean:0.55, Balance:0.58).

In Table 11, TCSBoost.HS using WPD = 1.2 and W1-PF =

1.0 is compared with other classifiers. In cases of CP NB and

CP NB+NN, the result of the Wilcoxon rank-sum test and

the effect size test are the same as the case of using WPD

= 1. In terms of TCSBoost, the Wilcoxon rank-sum test

indicated that the difference in Balance and G-mean was not

statistically significant having p-val > 0.05. The difference in

PD between TCSBoost.HS and TCSBoost was statistically

significant having p-val < 0.05. In addition, the effect size

is 0.64 meaning a medium size effect. With regards to WP

NB, the effect size is small in each case (G-mean:0.53,

Balance:0.56). Classifiers producing low PD or high PF

cannot be used from the practical point of view. The high

overall performance (Balance and G-mean) computed with

PD and PF is desirable.

For RQ1, the performances between TCSBoost.HS and

other CPDP models are compared. Compared with CP NB and

CP NB+NN, TCSBoost.HS is better with regards to PF,

Balance and G-mean. In comparison to TCSBoost,

TCSBoost.HS using WPD=1.0 shows similar G-mean and

Balance performance. With regards to PD, the effect size is

small. When WPD = 1.2, TCSBoost.HS shows similar Balance

and G-mean values with TCSBoost. In terms of PD,

TCSBoost.HS is better than TCSBoost. This points out that

the higher weight of PD utilized in the fitness function of HS

helps to increase the final result of PD for target data.

TCSBoost.HS shows worse performance than TCSBoost with

regard to PF. Nevertheless, it is practically better in that PD

values outperform those of TCSBoost. Because TCSBoost.HS

employing Harmony Search produces better results than

TCSBoost does, the parameters tuned by HS are effective for

cost-sensitive boosting for CPDP. Thus, H10 is rejected.

For RQ2, the performances between TCSBoost.HS and

WPDP is compared. With regards to G-mean and Balance,

the effect size of two TCSBoost.HS models is small. Even

though PD performance of TCSBoost.HS is worse than that

of WPDP, PF performance of TCSBoost.HS is better than

교차 프로젝트 결함 예측 성능 향상을 위한 효과적인 하모니 검색 기반 비용 민감 부스팅 최적화 89

that of WPDP. Thus, H20 is rejected.

To sum up, the experimental results from the 15 CPDP

cases show that Harmony Search can identify parameters

adapted for datasets having different distributional

characteristics and the class imbalance ratio. Consequently,

TCSBoost.HS can be considered as a more stable and

effective CPDP approach in the light of higher PD, G-mean

and Balance as well as low PF rates.

7. Threats to Validity

7.1 Construct Validity

In order to decrement the search space of a HS algorithm,

domain knowledge with regards to class imbalance and

distributional characteristics are used in several parts. Such

treatments may hinder the algorithm from finding the global

optimum.

7.2 Internal Validity

The fitness value of the HS algorithm is G-mean calculated

over the validation data that are extracted via the random

stratified sampling. A fifth of training data is used as the

validation data. The fitness function is the key ingredient of

the SBSE technique to identify the optimal solution. There

may exist a sampling bias of the validation data.

7.3 External Validity

The findings in this study are mostly based on the open

source software project. Thus, if other closed software projects

having dissimilar development environments, different

conclusions may be reached.

7.4 Statistical Conclusion Validity

To evaluate the experimental results, Wilcoxon rank-sum

test at a 5% significance level and the nonparametric

A-statistic effect size test are conducted. Such tests are

generally recommended for the performance comparison

between two learners.

8. Conclusion

Software defect prediction models mostly using machine

learning techniques are affected significantly by their

parameters. To find optimal parameters, Search Based

Software Engineering (SBSE) techniques can be employed.

Harmony Search is one of the successfully used optimization

techniques in various domains including computer science,

electrical engineering, and civil engineering.

In this study, we present a novel technique based on HS

to optimize parameters of a CPDP model that is useful for a

company without sufficient local data. Our HS-based

technique aims to tune a parameter related to class imbalance

and parameters related to distributional characteristics playing

a crucial role in CPDP. As Harman et al. [20] suggested,

domain knowledge to decrement the search space is actively

applied. To apply domain knowledge, the lower/upper bounds

of each variable and constraints between parameters are

defined. Then, they are applied in the steps of the Harmony

Memory initialization, pitch adjusting and random playing.

Through the statistical test and the effect size test, we

show the presented optimization technique can produce the

meaningful results. By applying the proposed parameter

selection, the defect prediction performance can be enhanced.

As a future work, we would refine our approach so that it

can be more efficient. In this study, to reduce the size of the

search space, domain knowledge is utilized. Besides of further

investigating more relevant knowledge, we will study how to

mitigate the computational cost of the fitness function.

References

[1] H. He and E. A. Garcia, “Learning from imbalanced data,”

IEEE Trans. Knowl. Data Eng., Vol.21, No.9, pp.1263-1284,

Sep., 2009.

[2] D. Ryu, J.-I. Jang, and J. Baik, “A transfer cost-sensitive

boosting approach for cross-project defect prediction,” Softw.

Qual. J., pp.1-38, 2015.

[3] Z. Geem, J. Kim, and G. Loganathan, “A new heuristic

optimization algorithm: harmony search,” Simulation, Vol.76,

No.2, pp.60-68, 2001.

[4] M. Jureczko and L. Madeyski, “Towards identifying software

project clusters with regard to defect prediction,” Proc. 6th

Int. Conf. Predict. Model. Softw. Eng. - PROMISE '10, p.

1, 2010.

[5] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F.

Peters, and B. Turhan, “The PROMISE Repository of empirical

software engineering data,” 2012. [Online]. Available:

http://openscience.us/repo/.

[6] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A

Systematic Literature Review on Fault Prediction Performance

in Software Engineering,” IEEE Trans. Softw. Eng., Vol.38,

No.6, pp.1276-1304, Nov., 2012.

[7] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A

systematic and comprehensive investigation of methods to

build and evaluate fault prediction models,” J. Syst. Softw.,

Vol.83, No.1, pp.2-17, Jan., 2010.

[8] M. D'Ambros, M. Lanza, and R. Robbes, “Evaluating defect

prediction approaches: A benchmark and an extensive

comparison,” Empir. Softw. Eng., Vol.17, No.4-5, pp.531-577,

Aug., 2012.

[9] K. Dejaeger, “Toward Comprehensible Software Fault

Prediction Models Using Bayesian Network Classifiers,”

Softw. Eng. IEEE Trans., Vol.39, No.2, pp.237-257, 2013.

90 정보처리학회논문지/소프트웨어 및 데이터 공학 제7권 제3호(2018. 3)

[10] K. O. Elish and M. O. Elish, “Predicting defect-prone

software modules using support vector machines,” J. Syst.

Softw., Vol.81, No.5, pp.649-660, May, 2008.

[11] Y. Singh, A. Kaur, and R. Malhotra, “Empirical validation

of object-oriented metrics for predicting fault proneness

models,” Softw. Qual. J., Vol.18, No.1, pp.3-35, Jul., 2009.

[12] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B.

Murphy, “Cross-project defect prediction,” in Proceedings

of the 7th Joint Meeting of the European Software En-

gineering Conference and the ACM SIGSOFT Symposium on

The Foundations of Software Engineering, 2009, pp.91-100.

[13] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On

the relative value of cross-company and within-company

data for defect prediction,” Empir. Softw. Eng., Vol.14, No.5,

pp.540-578, Jan., 2009.

[14] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An

investigation on the feasibility of cross-project defect

prediction,” Autom. Softw. Eng., Vol.19, No.2, pp.167-199, Jul.,

2011.

[15] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning

for cross-company software defect prediction,” Inf. Softw.

Technol., Vol.54, No.3, pp.248-256, Mar., 2012.

[16] D. Ryu, O. Choi, and J. Baik, “Value-cognitive boosting with

a support vector machine for cross-project defect prediction,”

Empir. Softw. Eng., Vol.21, No.1, pp.43-71, Feb., 2016.

[17] D. Ryu, J. Jang, and J. Baik, “A Hybrid Instance Selection

using Nearest-Neighbor for Cross-Project Defect Prediction,”

J. Comput. Sci. Technol., Vol.30, No.5, pp.969-980, 2015.

[18] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A.

Panichella, and S. Panichella, “Defect prediction as a

multiobjective optimization problem,” Softw. Testing, Verif.

Reliab., Vol.25, Issue 4, pp.426-459, 2015.

[19] D. Ryu and J. Baik, “Effective Multi-Objective Naïve Bayes

Learning for Cross-Project Defect Prediction,” Appl. Soft

Comput. J., Vol.49, pp.1062-1077, 2016.

[20] M. Harman, P. McMinn, J. De Souza, and S. Yoo, “Search

based software engineering: Techniques, taxonomy, tutorial,”

Empir. Softw. Eng. Verif., pp.1-59, 2012.

[21] S. Merler, C. Furlanello, B. Larcher, and A. Sboner, “Tuning

cost-sensitive boosting and its application to melanoma

diagnosis,” Mult. Classif. Syst., pp.32-42, 2001.

[22] S. Wang and X. Yao, “Using Class Imbalance Learning for

Software Defect Prediction,” IEEE Trans. Reliab., Vol.62,

No.2, pp.434-443, Jun., 2013.

[23] S. Wang, H. Chen, and X. Yao, “Negative correlation learning

for classification ensembles,” 2010 Int. Jt. Conf. Neural

Networks, pp.1-8, Jul., 2010.

[24] D. Manjarres, I. Landa-Torres, S. Gil-Lopez, J. Del Ser, M.N.

Bilbao, S. Salcedo-Sanz and Z.W. Geem, “A survey on

applications of the harmony search algorithm,” Eng. Appl.

Artif. Intell., Vol.26, No.8, pp.1818-1831, Sep., 2013.

[25] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.

Kegelmeyer, “SMOTE?: Synthetic Minority Over-sampling

Technique,” J. Artif. Intell. Res., Vol.16, pp.321-357, 2002.

[26] I. Tomek, “Two modifications of CNN,” IEEE Trans. Syst.

Man Cybern., pp.769-772, 1976.

[27] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative samples

reduction in cross-company software defects prediction,” Inf.

Softw. Technol., Vol.62, pp.67-77, 2015.

[28] W. Fan, S. Stolfo, J. Zhang, and P. Chan, “AdaCost:

misclassification cost-sensitive boosting,” ICML, 1999.

[29] Y. Sun, A. Wong, and Y. Wang, “Parameter inference of cost-

sensitive boosting algorithms,” in International Conference

on Machine Learning and Data Mining, 2005, pp.21-30.

[30] M. Hall, E. Frank, and G. Holmes, “The WEKA data mining

software: an update,” ACM SIGKDD Explor. Newsl., Vol.11,

No.1, pp.10-18, 2009.

[31] Z. W. Geem, “Optimal cost design of water distribution

networks using harmony search,” Eng. Optim., Vol.38,

pp.259-277, 2006.

[32] Z. W. Geem, “State-of-the-Art in the Structure of Harmony

Search Algorithm,” in Recent Advances In Harmony Search

Algorithm, Springer Berlin Heidelberg, 2010, pp.1-10.

[33] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and

A. Bener, “Defect prediction from static code features:

current results, limitations, new approaches,” Autom. Softw.

Eng., Vol.17, No.4, pp.375-407, May, 2010.

Duksan Ryu

http://orcid.org/0000-0002-9556-0873
e-mail : dsryu@kaist.ac.kr

He received his Ph.D. degree in School of

Computing from KAIST in 2016. He

earned a bachelor's degree in computer

science from Hanyang University and a

Master's dual degree in software engineering from KAIST and

Carnegie Mellon University. His research areas are software

defect prediction and software reliability engineering.

Jongmoon Baik

http://orcid.org/0000-0002-2546-7665
e-mail : jbaik@kaist.ac.kr

He received his M.S. degree and Ph.D.

degree in computer science from University

of Southern California in 1996 and 2000

respectively. He received his B.S. degree

in computer science and statistics from Chosun University in

1993. He worked as a principal research scientist at Software and

Systems Engineering Research Laboratory, Motorola Labs,

where he was responsible for leading many software quality

improvement initiatives. Currently, he is an associate professor

in School of Computing at Korea Advanced Institute of Science

and Technology (KAIST). His research activity and interest are

focused on software six sigma, software reliability & safety, and

software process improvement.

