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ABSTRACT

Software Defect Prediction (SDP) is a field of study that identifies defective modules. With insufficient local data, a company can 

exploit Cross-Project Defect Prediction (CPDP), a way to build a classifier using dataset collected from other companies. Most machine 

learning algorithms for SDP have used more than one parameter that significantly affects prediction performance depending on different 

values. The objective of this study is to propose a parameter selection technique to enhance the performance of CPDP. Using a Harmony 

Search algorithm (HS), our approach tunes parameters of cost-sensitive boosting, a method to tackle class imbalance causing the difficulty 

of prediction. According to distributional characteristics, parameter ranges and constraint rules between parameters are defined and applied 

to HS. The proposed approach is compared with three CPDP methods and a Within-Project Defect Prediction (WPDP) method over fifteen 

target projects. The experimental results indicate that the proposed model outperforms the other CPDP methods in the context of class 

imbalance. Unlike the previous researches showing high probability of false alarm or low probability of detection, our approach provides 

acceptable high PD and low PF while providing high overall performance. It also provides similar performance compared with WPDP.
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교차 프로젝트 결함 예측 성능 향상을 위한 효과적인 

하모니 검색 기반 비용 민감 부스팅 최적화
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요     약

소프트웨어 결함 예측(SDP)은 결함이 있는 모듈을 식별하기 위한 연구 분야이다. 충분한 로컬 데이터가 없으면 다른 회사에서 수집한 데이

터를 사용하여 분류기를 구축하는 교차 프로젝트 결함 예측(CPDP)을 활용할 수 있다. SDP에 대한 대부분의 기계 학습 알고리즘은 서로 다른 

값에 따라 예측 성능에 큰 영향을 미치는 하나 이상의 매개 변수를 사용한다. 본 연구의 목적은 CPDP의 예측 성능 향상을 위해 매개 변수 선

택 기법을 제안하는 것이다. Harmony Search 알고리즘을 사용하여, 예측 어려움을 야기하는 클래스 불균형을 해결하는 방법인 비용에 민감한 

부스팅의 매개 변수를 조정한다. 분포 특성에 따라 매개 변수 범위와 매개 변수 간의 제한 조건 규칙이 정의되어 하모니 검색 알고리즘에 적용

된다. 제안된 접근법은 15개의 대상 프로젝트를 대상으로 3개의 CPDP 모델과 내부프로젝트 결함 예측(WPDP) 모델을 비교한다. 실험 결과는 

제안된 방법이 클래스 불균형의 맥락에서 다른 CPDP 방법보다 성능이 우수하다는 것을 보여준다. 이전의 연구에서는 탐지 확률이 낮거나 오보 

가능성이 높았으나 우리의 기법은 높은 PD와 낮은 PF를 제공하면서 높은 전체 성능을 보였다. 또한 WPDP와 비슷한 성능을 제공하였다.
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1. Introduction

Software defect prediction (SDP) is an attractive field 

of study identifies defective modules. Software quality 

assurance resources for software inspection and testing are 

usually limited and thus they should be allocated with 

caution. Such valuable resources can be allocated effectively 

to defective modules identified by SDP. With insufficient 

https://doi.org/10.3745/KTSDE.2018.7.3.77
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local data, a company can take advantage of Cross-Project 

Defect Prediction (CPDP), a way to construct a classifier 

using datasets collected from other companies. SDP has 

been studied on the basis of various machine learning 

algorithms. Most machine learning algorithms have used 

more than one parameter that significantly affect prediction 

performance depending on different values.

On software defect datasets, the ratio between the 

defective instance and the non-defective instance is not 

balanced. This problem called class imbalance causes the 

difficulty of prediction. One of the main methods to address 

class imbalance is cost-sensitive learning. Cost-sensitive 

learning indicates that the costs of incorrectly classified errors 

are non-uniformly treated while building a classification 

model. In other words, the importance of class identification 

is differently reflected into misclassification costs. In this 

context, it is desired for a classifier to produce high 

performance of the minority class (defect class) without 

seriously worsening the performance of the majority class 

(non-defect class) [1]. In cost-sensitive boosting methods, 

misclassification costs are easily integrated into the weight 

update formula. Most cost-sensitive boosting algorithms 

have only taken into account Within-Project (WP) data 

without external data. Ryu et al. [2] proposed a cost- 

sensitive boosting method for CPDP that is called Transfer 

Cost-Sensitive Boosting (TCSBoost) considering class 

imbalance in CP settings. It extracted additional cost 

parameters for instances with different distributional 

characteristics. For different CPDP settings, parameters 

should be tuned adaptively. If parameters can be adaptively 

tuned depending on different CPDP settings, predictive 

performance may be enhanced. In this study, we investigate 

if our parameter tuning technique based on Harmony Search 

[3] can provide high predictive performance in CP settings. 

We explore the following research questions:

∙RQ1: Does Harmony Search technique effectively tune 

parameters of cost-sensitive boosting for CPDP?

∙RQ2: Can the proposed method provide the predictive 

performance comparable to within-project defect 

prediction?

The objective of this research is to present a search- 

based optimization method effective for CPDP. We propose 

a novel approach called TCSBoost using Harmony Search 

(TCSBoost.HS) that tunes parameters of a cost adjustment 

function that significantly affect the performance of cost- 

sensitive boosting in CP settings. We use Jureczko datasets 

[4] for the experiments obtained from PROMISE repository 

[5]. The parameters assigning the correct/incorrect classifi-

cation costs are related to the distributional characteristics 

and class imbalance. Using such domain knowledge, the size 

of the search space is reduced in the steps of initialization, 

range settings, and relative value settings between param-

eters.

To evaluate prediction performance, TCSBoost.HS approach 

is compared with TCSBoost and other classification 

techniques in CP and WP settings. We performed a statistical 

significance test and the effect size test. The experimental 

results show that TCSBoost.HS provides better defect 

prediction ability than CPDP models we compared with. In 

particular, it shows predictive performance similar to WPDP. 

As a result, our proposed approach can effectively help to 

allocate testing or inspection resources on defect-prone 

modules in CP settings.

The organization of the remaining sections is as follows. 

As a background, Harmony Search is explained in section 2. 

In section 3, we describe related work covering SDP and 

parameter tuning. In section 4, the proposed HS based 

optimization method is described. Section 5 includes the 

details of the experimental setup. In section 6, the 

experimental results are explained. In section 7, the threats 

to validity are covered. In the last section, the conclusion is 

summarized.

2. Harmony Search

Harmony Search (HS) is a music-inspired meta-heuristic 

optimization algorithm. HS mimics the process of instrument 

players searching the best harmony with their experience 

and repeated practice while improvising. The algorithm is 

first suggested by Geem et al. [3]. Since then, it has acquired 

remarkable results in the field of combinatorial optimization.

The fundamental of HS is like a jazz improvisation. 

Players try to make a harmony with each other. They tune 

the pitch of the instruments based on their experiences or 

randomly to find a better harmony. By this repeated practice, 

the players reach to the best harmony that can please the 

audiences.

Under this principle, HS finds the optimal solution of a 

given problem through the following steps.

1) Initializes a problem and algorithm parameters

2) Initializes a harmony memory

3) Improvises a new harmony

4) Updates the harmony memory

5) Checks a stopping criterion

Table 1 shows the parameters of HS. Harmony Memory 

Size (HMS) indicates the maximum size of the experiences 

of players, representing Harmony Memory (HM). Remaining 

parameters, Harmony Memory Considering Rate (HMCR), 

Pitch Adjusting Rate (PAR), and Fret Width (FW) are used 



교차 프로젝트 결함 예측 성능 향상을 위한 효과적인 하모니 검색 기반 비용 민감 부스팅 최적화  79

Parameter Description

Harmony Memory Size 

(HMS)

The number of solution vectors 

simultaneously handled

Harmony Memory 

Considering Rate 

(HMCR)

The rate (0≤HMCR≤1) where HS 

picks one value randomly from HM

Pitch Adjusting Rate 

(PAR)

The rate (0≤PAR≤1) where HS 

tweaks the value which was 

originally picked from memory

Maximum Improvisation 

(MI)
The number of iterations

Fret Width 

(FW)
The bandwidth of pitch adjustment

Table 1. Parameters of a Harmony Search Algorithm

to generate a new harmony. HMCR is a probability of 

choosing a harmony from HM, and PAR is a probability to 

adjust the pitch of chosen harmony. FW represents the 

changing bandwidth of pitch adjustment. MI (Maximum 

Improvisation) indicates the maximum number of iterations.

Based on the initialized value of HMS, HS generates the 

candidate solutions and stores them in HM. The fitness of 

each candidate is calculated by an objective function. Then, 

a new harmony is created by 3 ways, according to the 

parameters, HMCR and PAR.

∙ Random Playing: The new candidate solution is 

randomly generated by the probability of (1-HMCR).

∙ Memory Consideration: The solution is randomly 

selected from HM by the probability of HMCR and is 

preserved as it is by the probability of (1-PAR).

∙ Pitch Adjusting: The solution is randomly selected from 

HM by the probability of HMCR and is adjusted by the 

probability of PAR.

After a new candidate solution is generated by one of 

three ways described above, HM is updated. If the new 

solution has a better objective function value than the value 

of the worst candidate solution in HM’s objective function, 

the new one replaces the old one. HS iterates the solution 

generating and HM updating process until it reaches the 

preset exit condition or the maximum iteration value.

3. Related Work

3.1 Software Defect Prediction

Software Defect Prediction (SDP) aims at the optimal 

allocation of software quality assurance resources via the 

correct identification of defective modules. Most SDP studies 

are based on machine learning algorithms [6–11]. Not only 

Within-Project Defect Prediction (WPDP) using local data to 

build a classifier but also Cross-Project Defect Prediction 

(CPDP) using cross-project data to construct a classifier 

have attracted many researchers.

Zimmermann et al. [12] presented that only 21 among 622 

CPDP cases were successful. They asserted that the 

identification of the data and process characteristics was 

crucial for dealing with different distributions between the 

source project and the target project. They also suggested 

CPDP issues be investigated by more researchers.

Turhan et al. [13] proposed the relevancy filtering method 

based on the nearest neighbor for CPDP. They indicated that 

Within-Project (WP) data were more useful to build a 

classifier compared to Cross-Project (CP) data.

He et al. [14] employed an example selection to deal with 

CPDP problems. They used 16 distributional characteristics 

including mode, median, mean, range, and variance for 

experiments. They asserted that predictive performance was 

closely related to such distributional characteristics.

Ma et al. [15] studied an approach called Transfer Naïve 

Bayes (TNB) for CPDP. As a way of measuring the similarity 

between projects, the range was used. The similarity 

weights calculated were used for building their proposed 

model.

Ryu et al. [16] proposed a boosting method for CPDP 

considering different distributions and class imbalance 

together. Asymmetric misclassification costs and similarity 

weights from the distributional characteristics of a source 

dataset and a target dataset were derived and different 

resampling mechanisms depending on them were used. The 

range was used to compute the similarity weights.

Ryu et al. [17] presented an approach called a Hybrid 

Instance Selection using Nearest-Neighbor (HISNN) method 

for CPDP with consideration of class imbalance. It adopted 

a selective learning technique based on local knowledge. If 

local knowledge is strong enough, k-nearest neighbor 

insensitive to class imbalance was used to predict defects. 

Otherwise, naïve Bayes using global knowledge was used.

Ryu et al. [2] presented a cost-sensitive boosting method 

for CPDP that is called Transfer Cost-Sensitive Boosting 

(TCSBoost) considering class imbalance in CP settings. It 

applied cost-sensitive learning and transfer learning together 

to CP data. It extracted additional cost parameters for 

instances with different distributional characteristics.

Canfora et al. [18] presented a genetic algorithm-based 

multi-objective classification model called a multi-objective 

defect predictor (MODEP). Their approach aimed to maximize 

the number of defect-prone modules (effectiveness) whereas 

minimizing lines of code to be inspected (inspection cost). It 

allowed classifiers to provide a compromise between two 

objectives.
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Fig. 1. Overall Process of CPDP using Harmony Search Optimization

Ryu and Baik [19] proposed multi-objective naïve Bayes 

classification techniques with consideration of the class 

imbalance problem in CP settings. The multi-objective 

optimization functions were formulated based on class 

imbalance. The class probability and the feature weights 

were parameterized and then they are searched by Harmony 

Search. They showed that their approaches could be applied 

to various prediction requirements in CP settings.

According to previous CPDP studies, the identification of 

distributional properties between a source project and a target 

project played an important role in the success of CPDP. In 

addition, recent studies showed that the prediction perfor-

mance of CPDP can be  enhanced by class imbalance learning.

3.2 Parameter Optimization

Harman et al. [20] reviewed various optimization techniques 

in software engineering including Simulated Annealing, and 

Genetic Algorithm. The authors presented limitations of 

Search-Based Software Engineering (SBSE) and methods to 

overcome them. They asserted that the search space be 

reduced using domain knowledge whenever possible.

Merler et al. [21] proposed a method to tune the par-

ameters of a cost-sensitive boosting algorithm. A bisection 

method was used to optimize the performance toward the 

sensitivity and specificity. The weights for negatives and 

positives are updated differently at each step. But it didn’t 

address different dataset distributions.

Wang and Yao [22] proposed a variant of AdaBoost.NC 

[23] using a Negative Correlation learning algorithm. During 

the training of a boosting algorithm, a parameter was 

automatically configured. The dynamic version showed 

better performance than the original AdaBoost.NC.

Manjarres et al. [24] reviewed application portfolio of the 

music-inspired Harmony Search algorithm used in various 

domains including computer science, electrical engineering 

and civil engineering. They pointed out, as a meta-heuristic 

algorithm, it was successfully applied to solve computa-

tionally expensive optimization problems.

In this study, Harmony Search was applied to optimize 

the parameters of cost-sensitive boosting for CPDP. 

Additionally, it is adjusted to decrement the search space 

using characteristics of dataset distributions and class 

imbalance.

4. Harmony Search Based Parameter Optimization

We propose a parameter optimization technique using 

Harmony Search for Transfer Cost-Sensitive Boosting 

(TCSBoost) approach. This approach aims to identify optimal 

parameters and efficiently decreasing the search space by 

employing domain knowledge drawn from distributional 

properties and class imbalance. Fig. 1 illustrates the overall 

defect prediction process using a Harmony Search algorithm.

After the preparation of defect data for training and 

testing, training data are resampled with SMOTE [25] and 

Tomek Links [26] to deal with class imbalance. Then, the 

similarity weight using the range method [16] is calculated 

and the parameters are tuned via Harmony Search. Next, the 

TCSBoost model is built and tested using target data. 

Finally, the performance of prediction is evaluated with four 

performance measures.
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4.1 Preparing Defect Dataset

Source and target project data are arranged as a training 

set and a test set respectively. If an example has at least a 

bug, it is labelled as buggy. If it has no bug, it is labelled 

as clean.

4.2 Resampling with SMOTE and Tomek Link

SMOTE (Synthetic Minority Over-sampling Technique) 

[25] and Tomek links [26] are used in our approach to 

represent the defective instances better. SMOTE, a way of 

over-sampling the minority class, generates synthetic 

minority class instances instead of duplicating existing 

instances. Tomek links can be used to under-sample 

instances. They only identify instances close to the class 

boundary. When the majority class instances close to the 

class boundary are under-sampled, overlapping around the 

class boundary can be reduced. We performed SMOTE and 

then Tomek link-based under-sampling. This can increase 

the performance of the Probability of Detection (PD) 

although the Probability of a False alarm (PF) increases. PD 

and PF are explained in detail in the later phase.

4.3 Similarity Weight Computation

In this phase, the similarity weight is computed to identify 

the distributional characteristics between source data and 

target data. This method is used in several CPDP studies [2], 

[15], [16], [27].

Suppose   is the jth attribute of  , given a sequence 


 

⋯. The maximum and minimum value of jth 

attribute in the test data are obtained as follows:݆݉ܽݔ ൌ max ܽ1݆, ܽ2݆, … , ݆ܽ݉ ,	݆݉݅݊ ൌ min ܽ1݆, ܽ2݆, … , ݆ܽ݉ ,

where m is the number of the test instances, k is the number 

of attributes, and   …. The vector    

⋯ has the maximum value of the attribute 

on the test data and the vector   ⋯ has 

the minimum value of the attribute on the test data. Then, 

the similarity weight of each training instance is calculated 

by the following:

 ∑  
 ,                 (1)

where   is the th attribute of instance   and 


     ≤ ≤

 

4.4 Transfer Cost-Sensitive Boosting Technique

The overall process of TCSBoost only excludes the step 

of Harmony Search Optimization in Fig. 1. TCSBoost 

addresses class imbalance between the defect class and the 

non-defect class as well as feature distributional differences 

between a source project and a target project. Algorithm 1 

shows the TCSBoost algorithm.

Source project data (S), a small amount of target project 

data (T), and the similarity weight (SW) are input 

parameters. Firstly, source data and target data are 

assembled together as a training set. Secondly, the iteration 

of the boosting algorithm is performed. The data weight 

vector (wn) is used by the base classifier (h) identifying 

weighted instances during training. 

AdaCost [28] only deals with the class imbalance. By 

adapting a cost adjustment function for CPDP, TCSBoost 

addresses not only the class imbalance but also the 

distributional characteristics. Classification costs are assigned 

differently according to the similarity between a training set 

and a test set.

The cost adjustment function, (n) is depicted as (n) = 

(sign(tn, hm), cn), where sign(tn, hm) is positive for correct 

classification (+) and negative for incorrect classification (-). 
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Distribution
Cost adjustment 

function
Class Effect Weighting

Similar 

distribution

+(c) = 

-1․p2․c + p3 

> 0

Positive
Decrease 

weight
Small

Negative
Decrease 

weight
Medium

-(c) =  p4․c 

> 0

Positive
Increase 

weight
Large

Negative
Increase 

weight
Medium

Different 

distribution

+(c) = 

-1․p5․c + p6 

> 0

Positive
Decrease 

weight
Small

Negative
Decrease 

weight
Medium

-(c) =  p7․c - 

p8 < 0

Positive
Decrease 

weight
Small

Negative
Decrease 

weight
Medium

Table 2. Effect of Cost Adjustment FunctionThe cost adjustment function of TCSBoost is as follows:

∙ The cost adjustment function for the instances with the 

same or similar distribution

+(c) = -0.25․c + 0.25

-(c) =  0.25․c

∙ The cost adjustment function for the instances with the 

different distribution

+(c) = -0.25․c + 0.25

-(c) =  0.25․c - 0.5

The previous study proposing TCSBoost demonstrated 

how small amount of WP data (target project data) can be 

used together with CP data (source project data) in the 

boosting algorithm. In order for WP data to be used as 

training data, more time and efforts for testing and 

inspection are required to label them as buggy or clean. In 

this study, however, we build a boosting model using only 

CP data without including WP data. Thus, our approach can 

be utilized early without additional efforts.

4.5 Harmony Search-Based Optimization Technique

Because the cost adjustment function of TCSBoost mainly 

affects the defect prediction performance, we aim to optimize 

its parameters. The parameters to optimize are identified 

considering class imbalance and distributional characteristics. 

Because the cost factor of the minority class is set to 1.0 as 

Sun et al. did [29], it is not considered as a parameter to 

tune. The parameter variables identified to tune are from p1 

to p8 as follows:

∙ The cost factor of the majority class: p1

∙ The cost adjustment function for the instances with the 

similar distribution

+(c) = -1․p2․c + p3

-(c) =  p4․c

∙ The cost adjustment function for the instances with the 

different distribution

+(c) = -1․p5․c + p6

-(c) =  p7․c - p8

Table 2 shows the effect of a cost adjustment function we 

adopted in our approach based on the weight update rule of 

TCSBoost. For the source data belonging to the similar 

distribution, the weight of instances predicted correctly is 

decreased and the weight of instances predicted incorrectly 

is increased. In the case of true prediction, we decrease the 

weight of True Positives more conservatively than those of 

True Negatives. In the case of false prediction, the weights 

of False Negatives are increased more than those of False 

Positives. For the source data belonging to the different 

distribution, we decrease the weight of instances classified 

correctly and decrease the weight of instances classified 

incorrectly. In the case of true prediction, the weights of 

True Positives are decreased more than those of True 

Negatives. In the case of false prediction, the weights of 

False Negatives are decreased more conservatively than 

those of False Positives.

Harman et al. [20] presented SBSE limitations and 

techniques to overcome them. They guided domain knowledge 

should be employed whenever possible. In particular, when 

the fitness function is too computationally expensive, the size 

of the search space can be efficiently reduced by utilizing 

domain knowledge. In this study, several parts that domain 

knowledge can be used are identified. The lower/upper 

bounds of the variable can be enforced with several 

constraints drawn from distributional characteristics. Such 

constraints can help to reduce the size of the search space 

of a HS algorithm. Rationale of constraints is based on the 

mechanisms addressing the different correct/incorrect 

classification costs between the majority class and the 

minority class, and different distributions between a source 

project and a target project.

Table 3 defines the search space where HS aims to find 

an optimal parameter configuration. The above parameters 

of TCSBoost.HS (i.e., from p1 to p8) have the range in [0,1]. 

To simplify a HS algorithm, they are replaced into integer 

values by multiplying 10 (i.e., from Hp1 to Hp8). All 

variables can have a value ranging from 1 to 10. Based on 

distributional characteristics, ranges satisfying all constraints 
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from Hp1 to Hp8 can be obtained. We further reduce the 

range considering the constraints and the properties of the 

parameters. Compared to the other parameters, Hp5 and Hp7 

need to have smaller values, so the range from 1 to 5 is 

chosen. The other values are selected with the middle range 

(from 3 to 7) because high value of each parameter can 

increase/decrease the weight significantly during iteration 

and may cause overfitting.

Algorithm 2 describes the Harmony Search algorithm. 

After the parameters of HS are defined, Harmony 

Memory (HM) is initialized before running the main loop. 

It has the following form in the case of the seven 

variables and HMS = n.

Originally, the entries of HM are randomly configured. In 

our experiments, as part of decreasing the search space, HM 

is initialized like the following:

The initialization of HM is crucial to reduce the size of 

the search space because initial parameter values act as a 

baseline of the performance. By considering different 

impacts of class imbalance of each dataset, the whole range 

of Hp1 is covered. The chosen values of the remaining 

parameters (from Hp2 to Hp8) are based on constraints 

derived from the distributional properties between a training 

set and a test set. They are the median values of the 

reduced range in Table 3.

Memory consideration means that the algorithm 

randomly selects a note stored in HM with the probability 

of 1-PAR. Pitch adjusting indicates that the algorithm 

randomly adjusts the pitch slightly within +/- FW. It should 

ensure that constraints and lower/upper bounds are 

satisfied. Random playing indicates that the algorithm 

randomly selects any pitch within lower/upper bounds. 

Constraints and lower/upper bounds are checked to be 

satisfied. In the Harmony Memory update step, the 

algorithm checks whether the new harmony drawn from the 

above methods is better than the worst. Finally, the 

algorithm returns the best harmony stored in HM.

As a fitness function, we compute the weighted 

geometric mean (WG-mean) value after running TCSBoost 

with the eight parameters. WG-mean is explained in the 

phase of performance report in detail. At this time, source 

project data are divided into training data and validation 

data.

To select validation data, we employed the technique used 

by Ryu et al. [16]. In this method, source instances similar 

to target data are intended to be evenly distributed into the 

training set and the validation set. The process of the 

validation data selection is shown in Fig. 2. (1) Input data 

are split in 50:50 randomly. (2) Each half set is sorted by the 

weight in descending order and data with the high weight 

are chosen as validation data. Two fifth of a half set are 

chosen for validation data. Thus, a fifth of the total input 

data are employed as a validation set. The remaining instances 

are chosen as a training set.

The entire source project data and the parameters 

identified after the optimization are used as input data for 

building a final TCSBoost model.

Fig. 2. Validation Data Selection

4.6 Classification Prediction

In this phase, using the previously built boosting model, 

each instance of target project data is classified as buggy or 

clean. The feature space of target data is identical to that of 

source data.
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Variable Constraints Rationale of constraints

Range 

satisfying all 

constraints

Reduced 

range

Hp1 1≤Hp1≤10 No constraints 1～10 1～10

Hp2 1<Hp2<10 1≤Hp5<Hp2 & Hp2<Hp3≤10 2～9 3～7

Hp3 1<Hp2<Hp3≤10

1≤Hp5<Hp2

To decrease the weights of similar instances correctly predicted, 

+(c) = -1․p2․c + p3 > 0. Thus, p3 > p2․c. 

To satisfy all the range of c, p3 > p2.

3～10 3～7

Hp4 1<Hp4≤10 1≤Hp7<Hp4 2～10 3～7

Hp5 1≤Hp5<Hp2<10

Instances in different distribution are less valuable than those in 

similar distribution. Compared to similar instances, this constraint 

decreases more weight of different instances.

For example, when c = 1, p3 = 1, p6 = 1, p2 = 0.5, and p5 = 0.1, 

+(c) = -1․p2․c + p3 = 0.5, and the weight = 
 ⋅

+(c) = -1․p5․c + p6 = 0.9, and the weight = 
 ⋅

1～8 1～5

Hp6 1≤Hp5<Hp6≤10

To decrease the weight of different instances correctly predicted, 

+(c) = -1․p5․c + p6 > 0. Thus, p6 > p5․c. To satisfy all the  

 range of c, p6 > p5.

2～10 3～7

Hp7 1≤Hp7<Hp4≤10

Instances in different distribution are less valuable than those in 

similar distribution. The decreasing weight of different instances is 

relatively higher than the increasing weight of similar instances.

For example, when c = 1, p8 = 1, p4 = 0.5, and p7 = 0.1,

-(c) =  p4․c = 0.5, and the weight = 
⋅

-(c) =  p7․c - p8 = -0.9, and the weight = 
 ⋅

1～9 1～5

Hp8 1≤Hp7<Hp8≤10

To decrease the weight of different instances that are incorrectly 

classified, -(c) = p7․c - p8 < 0. Thus, p8 > p7․c. To satisfy 

all the range of c, p8 > p7.

2～10 3～7

Table 3. Parameter for Optimization

 
Predicted class

Buggy Clean

Actual 

class

Buggy TP (True Positive) FN (False Negative)

Clean FP (False Positive) TN (True Negative)

Table 4. Confusion Matrix

4.7 Performance Report

Software defect datasets tend to have the class imbalance 

issue. The learner constructed on such datasets is mostly 

evaluated by the overall and individual performance together. 

The individual performance on the defect class is typically 

assessed by the Probability of Detection (PD) and the 

Probability of a False alarm (PF). Table 4 shows a confusion 

matrix. True Positive (TP) is the number of buggy instances 

predicted correctly as buggy. False Positive (FP) is the 

number of clean instances predicted as buggy. True 

Negative (TN) is the number of clean instances predicted 

correctly as clean. False Negative (FN) is the number of 

buggy instances predicted as clean. PD indicates the ratio 

of appropriate instances among all the retrieved instances. 

PD is defined as:  


. PF represents the 

proportion of clean instances predicted as buggy. PF is 

defined as:  


. The lower PF value is better in 

contrast to PD.

Geometric mean (G-mean) and Balance are useful for 

assessing the overall performance of predictors under the 

imbalanced context. Balance is a Euclidean distance from the 

ideal point (PD=1, PF=0) to real (PD, PF) point. Balance is 

defined as:   

 

. G-mean 

indicates the geometric mean of recall values from the 

non-defect class and the defect class. G-mean is described 

as: G-mean = . They aim to show how well a 

classifier can balance the performance between the clean 

class and the buggy class. In contrast to PF, three metrics 

including PD, Balance and G-mean are better when they are 

higher.

WG-mean = 


   
    

where WPD and W1-PF are the weight for PD and 1-PF 

respectively. For instance, suppose WPD = 2 and W1-PF = 1, 

WG-mean =   . PD has greater value than 
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Project # Instances # Buggy % Buggy Description

ant 125 20 16 Open-source

arc 234 27 11.5 Academic

camel 339 13 3.8 Open-source

e-learning 64 5 7.8 Academic

jedit 272 90 33.1 Open-source

log4j 135 34 25.2 Open-source

lucene 195 91 46.7 Open-source

poi 237 141 59.5 Open-source

prop-6 660 66 10 Proprietary

redaktor 176 27 15.3 Academic

synapse 157 16 10.2 Open-source

systemdata 65 9 13.8 Open-source

tomcat 858 77 9 Open-source

xalan 723 110 15.2 Open-source

xerces 162 77 47.5 Open-source

Table 5. Projects in the Jureczko Dataset

Features

weighted methods per class (WMC), depth of inheritance tree 

(DIT), number of children (NOC), coupling between object classes 

(CBO), response for a class (RFC), lack of cohesion in methods 

(LCOM), lack of cohesion in methods (LCOM3), number of public 

methods (NPM), data access metric (DAM), measure of aggregation 

(MOA), measure of functional abstraction (MFA), cohesion among 

methods of class (CAM), inheritance coupling (IC), coupling 

between methods (CBM), average method complexity (AMC), 

afferent couplings (Ca), efferent couplings (Ce), maximum 

McCabe’s cyclomatic complexity (Max(CC)), average McCabe’s 

cyclomatic complexity (Avg(CC)), lines of code (LOC)

Table 6. Features of the Jureczko Datasets1-PF in the context of class imbalance. In line with this, 

WG-mean allows us to give more weights to PD while 

tuning the parameters of TCSBoost.

5. Experimental Setup

We answer the two research questions by conducting the 

comparative experiments. In order to figure out the effec-

tiveness of using WG-mean, the experiments are performed 

with different weights of PD and 1-PF, i.e. 1.0:1.0 and 1.2:1.0 

respectively. Our approaches are compared with Na?ve 

Bayes, Naive Bayes with a k-Nearest Neighbor filter [13] 

and TCSBoost under CP settings for RQ1. For RQ2, we 

investigate if the performance of our method is similar to 

that of Naive Bayes under WP settings.

Jureczko datasets are used to compare our method with 

other classifiers, because they are popularly used in the SDP 

studies. Balance and G-mean are effective performance 

metrics under the imbalanced context, because they are 

computed with the values of both PD and PF. The overall 

performance (e.g., Balance and G-mean) and the defect 

detection rate (PD) have a trade-off relationship [22]. 

Therefore, it is crucial to obtain a classifier producing high 

accuracy for the minority class while the accuracy of the 

majority class is not severely lowered. We formulate the 

following hypotheses to answer RQ1 and RQ2.

∙ H10: The performance of TCSBoost.HS is not better 

than those of other CPDP methods.

∙ H1A: The performance of TCSBoost.HS is better than 

those of other CPDP methods.

∙ H20: The performance of TCSBoost.HS is not similar to 

that of within-project defect prediction.

∙ H2A: The performance of TCSBoost.HS is similar to 

that of within-project defect prediction.

5.1 Datasets for Experiments

The Jureczko datasets [4] contain the instances represented 

with 20 static code attributes and 1 class label indicating 

whether the instance is defective or non-defective. 15 datasets 

were chosen from PROMISE repository [5] as Ryu et al. [2] 

did. They contain 11 open-source projects, 3 academic projects 

and a proprietary project. In Table 5, the properties of each 

project are explained. Table 6 shows the list of features of the 

Jureczko datasets used in the experiments.

5.2 CPDP and WPDP Settings

A dataset was chosen to be target data (for testing). The 

remaining datasets were utilized as source data (for training). 

Each experiment of CPDP was conducted 30 times, iteratively. 

For WPDP settings, a stratified M x N (M=6, N=5) fold cross 

validation strategy is employed.

5.3 Classification Models

In the cases of TCSBoost and TCSBoost.HS, Naive Bayes 

is used as a base learner. We used the implementation of the 

WEKA machine learning toolkit [30]. All of training and test 

data were min-max normalized, indicating that the range of 

features is rescaled to scale the range in [0, 1]. 

To compare the predictive performance, we included other 

learning algorithms, i.e., Naive Bayes under CP settings (CP 

NB), Naive Bayes with a kNN filter (CP NB+NN) and Naive 

Bayes under WP settings (WP NB). Naive Bayes is selected 

because it generally produces high prediction performance in 

Software Defect Prediction studies [6]. A log-filter was applied 

to training and test data before running the three models.

5.4 Parameter Setup

In the boosting algorithm, an empirical user-defined 

parameter, Lambda (λ), is utilized for the penalty magnitude 
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Target 

Data

CP NB CP NB+NN TCSBoost
TCSBoost.HS

(WPD:W1-PF=1:1)

TCSBoost.HS

(WPD:W1-PF=1.2:1)
WP NB

PD PF PD PF PD PF PD PF PD PF PD PF

ant 1 0.666 0.6 0.361 0.8 0.295 0.9 0.528 0.9 0.556 1 0.476

arc 0.555 0.444 0.629 0.512 0.444 0.135 0.592 0.376 0.629 0.398 0.833 0.542

camel 0.692 0.561 0.692 0.619 0.538 0.168 0.846 0.455 0.846 0.47 0.666 0.461

e-learning 0.8 0.372 1 0.525 0.6 0.067 0.6 0.237 0.7 0.254 0 0.272

jedit 0.9 0.609 0.844 0.494 0.433 0.137 0.6 0.31 0.6 0.318 0.944 0.444

log4j 0.794 0.287 0.941 0.663 0.352 0.059 0.705 0.188 0.823 0.252 1 0.6

lucene 0.714 0.528 0.648 0.317 0.373 0.144 0.692 0.336 0.692 0.336 0.777 0.428

poi 0.829 0.572 0.865 0.604 0.695 0.354 0.761 0.468 0.773 0.51 0.892 0.736

prop-6 0.863 0.653 0.651 0.378 0.439 0.227 0.712 0.451 0.727 0.471 0.615 0.331

redaktor 1 0.758 1 0.859 0.555 0.201 0.925 0.697 0.925 0.788 1 0.8

synapse 0.937 0.709 0.937 0.673 0.75 0.241 0.875 0.716 0.875 0.751 0.708 0.438

systemdata 0.777 0.553 0.777 0.464 0.444 0.089 0.666 0.214 0.666 0.232 0.5 0.272

tomcat 0.857 0.466 0.233 0.23 0.74 0.227 0.805 0.385 0.831 0.389 0.866 0.377

xalan 0.872 0.561 0.936 0.65 0.745 0.451 0.8 0.526 0.809 0.533 0.863 0.485

xerces 0.402 0.6 0.415 0.6 0.311 0.247 0.35 0.341 0.35 0.382 0.612 0.205

Median 0.829 0.561 0.777 0.525 0.538 0.201 0.712 0.385 0.773 0.398 0.833 0.444

Table 8. The Median PD & PF Performance of Classification Models

Parameter Setting

Harmony Memory Size (HMS) 10

Harmony Memory Considering Rate 

(HMCR)
0.8

Pitch Adjusting Rate (PAR) 0.4

Maximum Improvisation (MI) 10

Fret Width (FW)
10% of total value 

range

Table 7. Parameter Setting of Harmony Search

during each repitition. The value of λ is set to 0.5 to simplify 

the usage of all boosting algorithms. The maximum number 

of iterations (M) of TCSBoost and TCSBoost.HS algorithms 

is set to 30. In the TCSBoost algorithm, the cost factor of 

the minority class is fixed as 1.0. For the majority class, it 

is set to 0.5. Table 7 describes the parameter values of 

Harmony Search used for the experiments. Recommended 

parameter settings [31, 32] are as follows. HMS = 30～100, 

HMCR = 0.7～0.95, PAR = 0.1～0.5, and FW = 1～10%. In our 

approach, the value of HMS is set to 10 considering efficiency.

6. Experimental Results

Tables 8 and 9 show PD, PF, G-mean and Balance values 

of classifiers in CP and WP settings. The best performing 

cases are marked in boldface.

Table 8 describes the median PD and PF values of 

classifiers. In Fig. 3, a scatter plot is illustrated using median 

PF and PD values of six classifiers over fifteen datasets. The 

ideal value of PD and PF is 1 and 0 respectively. As such, 

the better classifier has many points located at the bottom 

right of the regions. While CP NB produces high PD (0.829), 

it produces the worst PF (0.561). Therefore, Fig. 3 shows 

most of the points are placed at the top right of the regions. 

CP NB+NN filters irrelevant source instances out through 

the nearest-neighbor filter. This results in reducing PF, 

but it is still high (0.525). TCSBoost, two TCSBoost.HS 

models and WP NB show more balanced performance 

withregards to PD and PF. TCSBoost shows the best PF 

(0.201) and the worst PD (0.538). Two Harmony Search 

based approaches show higher PD than TCSBoost while 

showing worse PF rates. Particularly, when WPD is larger 

than 1, PD is considerably improved compared to 

TCSBoost. Two TCSBoost.HS models show worse PD and 

better PF than WP NB. The practically useful predictor

Fig. 3. Scatter Plot of Median PF & PD Values of Six 

Classifiers Over 15 Datasets
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Target 

Data

CP NB CP NB+NN TCSBoost
TCSBoost.HS

(WPD:W1-PF=1:1)

TCSBoost.HS

(WPD:W1-PF=1.2:1)
WP NB

G B G B G B G B G B G B

ant 0.577 0.528 0.618 0.618 0.75 0.747 0.66 0.621 0.634 0.599 0.654 0.619

arc 0.555 0.555 0.554 0.553 0.619 0.595 0.601 0.6 0.602 0.6 0.58 0.552

camel 0.551 0.547 0.513 0.51 0.669 0.652 0.675 0.659 0.685 0.654 0.593 0.572

e-learning 0.708 0.7 0.688 0.628 0.747 0.713 0.691 0.682 0.691 0.682 0 0.283

jedit 0.592 0.562 0.653 0.633 0.611 0.587 0.639 0.638 0.639 0.638 0.72 0.684

log4j 0.752 0.75 0.562 0.529 0.576 0.54 0.738 0.73 0.757 0.746 0.617 0.563

lucene 0.58 0.574 0.665 0.665 0.565 0.545 0.673 0.671 0.677 0.676 0.654 0.648

poi 0.595 0.577 0.585 0.562 0.669 0.669 0.631 0.62 0.615 0.605 0.503 0.477

prop-6 0.547 0.528 0.636 0.636 0.582 0.572 0.625 0.621 0.62 0.614 0.628 0.626

redaktor 0.491 0.463 0.375 0.392 0.666 0.654 0.528 0.503 0.442 0.439 0.431 0.425

synapse 0.522 0.496 0.553 0.521 0.754 0.754 0.5 0.485 0.478 0.466 0.664 0.629

systemdata 0.589 0.578 0.645 0.636 0.636 0.602 0.694 0.689 0.694 0.689 0.603 0.597

tomcat 0.676 0.655 0.424 0.434 0.756 0.755 0.711 0.699 0.707 0.695 0.722 0.709

xalan 0.618 0.593 0.571 0.537 0.639 0.633 0.619 0.601 0.615 0.6 0.665 0.638

xerces 0.401 0.401 0.407 0.407 0.484 0.482 0.475 0.476 0.471 0.473 0.688 0.682

Median 0.58 0.562 0.571 0.553 0.639 0.633 0.639 0.621 0.634 0.614 0.628 0.619

Table 9. The Median G-mean & Balance Performance of Classification Models

TCSBoost.HS 

(WPD=1) vs.
CP NB

CP 

NB+NN
TCSBoost WP NB

PD
p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 0.35 0.42 0.77 0.37

PF
p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistics 0.23 0.30 0.86 0.41

G-mea

n

p-value <<0.001 <<0.001 0.08 0.31

A-statistics 0.68 0.71 0.46 0.51

Balanc

e

p-value <<0.001 <<0.001 0.4 0.002

A-statistic 0.70 0.72 0.48 0.55

Table 10. The Comparison of TCSBoost.HS (WPD=1) with 

Classification Models

TCSBoost.HS 

(WPD=1.2) vs.
CP NB

CP 

NB+NN
TCSBoost WP NB

PD
p-value <<0.001 0.13 <<0.001 <<0.001

A-statistic 0.40 0.47 0.80 0.41

PF
p-value <<0.001 <<0.001 <<0.001 0.07

A-statistics 0.27 0.34 0.89 0.46

G-mean
p-value <<0.001 <<0.001 0.01 0.92

A-statistics 0.66 0.68 0.45 0.50

Balance
p-value <<0.001 <<0.001 0.04 0.08

A-statistic 0.67 0.69 0.46 0.53

Table 11. The Comparison of TCSBoost.HS (WPD=1.2) with 

Classification Models

should produce high performance for the defect class 

without worsening the performance of the non-defect class, 

indicating that acceptably low PF and high PD values are 

preferred.

In Table 9, the median Balance and G-mean values of 

each model on the datasets are shown. In general two 

TCSBoost.HS models outperform other classification models. 

CP NB and CP NB+NN produce Balance and G-mean values 

lower than 0.6 respectively. TCSBoost.HS using WPD=1 

shows the best performance (G-mean:0.661, Balance:0.657).

The following research questions are analyzed in terms of 

the class imbalance.

∙ RQ1: Does Harmony Search technique effectively tune 

parameters of cost-sensitive boosting for CPDP?

∙ RQ2: Can the proposed method provide the predictive 

performance comparable to within-project defect 

prediction?

Previous researches [8, 33] suggested the way to assess 

the variability of the classifiers across multiple runs. The 

first, second (median) and third quartile of each CP or WP 

case are computed and sorted by their medians. Mini boxplot 

is utilized to display them. The first-third quartile range is 

represented by a bar while the median is marked as a circle. 

The minimum and maximum values are not displayed. The 

30 points of each target project obtained by repetition are 

merged on the basis of each performance measure. The first, 

second and third quartile are calculated by using the 450 

points of 15 target projects.

To compare the performance between two classifiers, two 

methods are applied. The Wilcoxon rank-sum test [34] is 

carried out at a 5% significance level as a statistical 

significance test. As a way to assess the magnitude of the 

improvement, A-statistics effect size test [35] recommended 

by [36] is conducted. According to the guidelines from [35], 

A-statistic of greater than 0.64 for PD, Balance and G-mean 

(or less than 0.36 for PF) means a medium effect size.

Fig. 4 illustrates mini boxplots of median PD, PF, Balance 

and G-mean values of six classifiers over 15 projects sorted 
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Fig. 4. Mini Plot of Median PD, PF, G-mean and Balance Values of Six Classifiers Over 15 Datasets

by median. With regards to PD, WP NB shows the best 

performance. TCSBoost shows the lowest PD performance. 

TCSBoost.HS shows better PD performance as the weight of 

PD used in the fitness function increases. As of PF, TCSBoost 

shows the best performance. TCSBoost.HS models show 

better PF performance than WP NB. With regards to Balance 

and G-mean, TCSBoost and TCSBoost.HS models are 

similar to WP NB.

Tables 9-10 describe the comparison of TCSBoost.HS 

with other classifiers using the Wilcoxon rank-sum test and 

A-statistics effect size test. The boldface indicates 

TCSBoost.HS is better with p-value < 0.05 or A-statistics 

> 0.64 (A-statistics < 0.36 for PF).

Table 10 shows the comparison of TCSBoost.HS using 

WPD = 1 and W1-PF = 1 with other classifiers. In cases of CP 

NB and CP NB+NN, the Wilcoxon rank-sum test indicated 

that the difference in PF, Balance and G-mean was 

statistically significant having p-val << 0.001. The effect 

size for PF, Balance and G-mean is 0.10, 0.70 and 0.69 

against CP NB and 0.14, 0.73 and 0.73 against CP NB+NN 

respectively, indicating a medium size effect. In terms of 

TCSBoost, the Wilcoxon rank-sum test indicated that the 

difference in Balance and G-mean was not statistically 

significant having p-val > 0.05. The difference in PD 

between TCSBoost.HS and TCSBoost was statistically 

significant having p-val < 0.05.

However, the effect size is 0.60 meaning a small effect. In 

terms of WP NB, the Wilcoxon rank-sum test indicated that 

the difference in Balance and G-mean was statistically 

significant having p-val < 0.05. But the effect size is small 

in each case (G-mean:0.55, Balance:0.58).

In Table 11, TCSBoost.HS using WPD = 1.2 and W1-PF = 

1.0 is compared with other classifiers. In cases of CP NB and 

CP NB+NN, the result of the Wilcoxon rank-sum test and 

the effect size test are the same as the case of using WPD 

= 1. In terms of TCSBoost, the Wilcoxon rank-sum test 

indicated that the difference in Balance and G-mean was not 

statistically significant having p-val > 0.05. The difference in 

PD between TCSBoost.HS and TCSBoost was statistically 

significant having p-val < 0.05. In addition, the effect size 

is 0.64 meaning a medium size effect. With regards to WP 

NB, the effect size is small in each case (G-mean:0.53, 

Balance:0.56). Classifiers producing low PD or high PF 

cannot be used from the practical point of view. The high 

overall performance (Balance and G-mean) computed with 

PD and PF is desirable.

For RQ1, the performances between TCSBoost.HS and 

other CPDP models are compared. Compared with CP NB and 

CP NB+NN, TCSBoost.HS is better with regards to PF, 

Balance and G-mean. In comparison to TCSBoost, 

TCSBoost.HS using WPD=1.0 shows similar G-mean and 

Balance performance. With regards to PD, the effect size is 

small. When WPD = 1.2, TCSBoost.HS shows similar Balance 

and G-mean values with TCSBoost. In terms of PD, 

TCSBoost.HS is better than TCSBoost. This points out that 

the higher weight of PD utilized in the fitness function of HS 

helps to increase the final result of PD for target data. 

TCSBoost.HS shows worse performance than TCSBoost with 

regard to PF. Nevertheless, it is practically better in that PD 

values outperform those of TCSBoost. Because TCSBoost.HS 

employing Harmony Search produces better results than 

TCSBoost does, the parameters tuned by HS are effective for 

cost-sensitive boosting for CPDP. Thus, H10 is rejected.

For RQ2, the performances between TCSBoost.HS and 

WPDP is compared. With regards to G-mean and Balance, 

the effect size of two TCSBoost.HS models is small. Even 

though PD performance of TCSBoost.HS is worse than that 

of WPDP, PF performance of TCSBoost.HS is better than 
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that of WPDP. Thus, H20 is rejected.

To sum up, the experimental results from the 15 CPDP 

cases show that Harmony Search can identify parameters 

adapted for datasets having different distributional 

characteristics and the class imbalance ratio. Consequently, 

TCSBoost.HS can be considered as a more stable and 

effective CPDP approach in the light of higher PD, G-mean 

and Balance as well as low PF rates.

7. Threats to Validity

7.1 Construct Validity

In order to decrement the search space of a HS algorithm, 

domain knowledge with regards to class imbalance and 

distributional characteristics are used in several parts. Such 

treatments may hinder the algorithm from finding the global 

optimum.

7.2 Internal Validity

The fitness value of the HS algorithm is G-mean calculated 

over the validation data that are extracted via the random 

stratified sampling. A fifth of training data is used as the 

validation data. The fitness function is the key ingredient of 

the SBSE technique to identify the optimal solution. There 

may exist a sampling bias of the validation data.

7.3 External Validity

The findings in this study are mostly based on the open 

source software project. Thus, if other closed software projects 

having dissimilar development environments, different 

conclusions may be reached.

7.4 Statistical Conclusion Validity

To evaluate the experimental results, Wilcoxon rank-sum 

test at a 5% significance level and the nonparametric 

A-statistic effect size test are conducted. Such tests are 

generally recommended for the performance comparison 

between two learners.

8. Conclusion

Software defect prediction models mostly using machine 

learning techniques are affected significantly by their 

parameters. To find optimal parameters, Search Based 

Software Engineering (SBSE) techniques can be employed. 

Harmony Search is one of the successfully used optimization 

techniques in various domains including computer science, 

electrical engineering, and civil engineering.

In this study, we present a novel technique based on HS 

to optimize parameters of a CPDP model that is useful for a 

company without sufficient local data. Our HS-based 

technique aims to tune a parameter related to class imbalance 

and parameters related to distributional characteristics playing 

a crucial role in CPDP. As Harman et al. [20] suggested, 

domain knowledge to decrement the search space is actively 

applied. To apply domain knowledge, the lower/upper bounds 

of each variable and constraints between parameters are 

defined. Then, they are applied in the steps of the Harmony 

Memory initialization, pitch adjusting and random playing.

Through the statistical test and the effect size test, we 

show the presented optimization technique can produce the 

meaningful results. By applying the proposed parameter 

selection, the defect prediction performance can be enhanced. 

As a future work, we would refine our approach so that it 

can be more efficient. In this study, to reduce the size of the 

search space, domain knowledge is utilized. Besides of further 

investigating more relevant knowledge, we will study how to 

mitigate the computational cost of the fitness function.
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