• Title/Summary/Keyword: Softening temperature

Search Result 406, Processing Time 0.026 seconds

Dip Coating of Amorphous Materials on Metal Surface (금속표면에 비정질의 피복)

  • Park, Byung-Ok;Yoon, Byung-Ha
    • Journal of the Korean institute of surface engineering
    • /
    • v.20 no.2
    • /
    • pp.49-59
    • /
    • 1987
  • The properties of $Cr_2O_3-Al_2O_3-SiO_2$ composite oxide coatings on steel surface were investigated. The results obtained were as follows: The microhardness of oxide coating layer increased with increasing heat-treatment temperature and $Cr_2O_3$ content in coating layer. The hardness showed the highest value (850Hv) treated at 700$^{\circ}C$ for $SiO_2:Al_2O_3:Cr_2O_3$=1:1:4. Increasing heat-treatment temperature, corrosion current density became lower and coating layer became denser. The corrosion current density showed the lowest value $(6.5{\times}10^{-5}\;Acm^2)$ treated at 750$^{\circ}C\;for\;SiO_2:Al_2O_3:Cr_2O_3$=1:1:3. These results were explained by protective layer which was formed during heat-treatment. The bonding between matrix and coating layer is expected to be made mechanically and chemically by the inter diffusion of Ni and Fe. The composite oxide coating was formed by softening of the binder with increasing heat-treatment temperature. The strengthening of coating layer is to be resulted from the dispersion of major oxide particles.

  • PDF

The Effect of Calcium on Microstructure of AZ61 Magnesium Alloy during Annealing Heat Treatment (AZ61 마그네슘 합금의 어닐링 중 Ca의 첨가에 따른미세조직 변화에 미치는 영향)

  • Kim, Kibeom;Jeon, Joonho;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2021
  • Due to high specific strength and low density, AZ series magnesium alloys have been receiving high interest as a lightweight material. However, their industrial application is limited due to the phenomenon that the strength decreases at elevated temperature by the occurrence of softening effect because of the Mg17Al12 phase decomposition. To solve this problem, many research were conducted to increase the high-temperature strength by forming a thermal stable second-phase component by adding new elements to the AZ magnesium. Especially, adding Ca to AZ magnesium has been reported that Ca forms the new second-phase. However, studies about the analysis of decomposition or precipitation temperature, formation composition, and components to understand the formation behavior of these precipitated phases are still insufficient. Therefore, the effect of Ca addition to AZ61 on the phase change and microstructure of the alloy during annealing was investigated. As a result of analysis of the initial and heat-treated specimen, AZ61 formed α-Mg matrix and precipitated phase of Mg17Al12, and AZX611 formed one more type of precipitated phase, Al2Ca. Also, Al2Ca was thermal stable at high temperatures. And after annealing, the laves phase was decomposed to under 10 ㎛ size and distributed in matrix.

Analysis of the relationship between composition and viscosity of soda-lime glass bottles (소다석회유리병의 조성과 점도의 상관관계 분석)

  • Seung Min Kang;Chang-Sam Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2023
  • Forty Viscosity data of glass bottles fabricated in a glass bottle manufacturing plant for 4 years were calculated using Lakatos model. The relationship between the glass bottle compositions and viscosities at log η of 3, 6.6, 10 and 12.3 Pa·s was analyzed. MgO that was a component of the glass bottle showed the maximum coefficient of variation of 0.89, but it gave a very small change in the viscosity. CaO that was another component of the glass bottle lowered the isokom temperature because it tended to reduce the number of non-bridging oxygen at temperature below a softening point.

Study on the Evaluation of Fracture Toughness at Welded Zone for the Pipe Steel by $CO_2$ Gas Welding ($CO_2$가스 배관용접부의 파괴인성평가에 관한 연구)

  • Na, Ui-Gyun;Yu, Hyo-Seon;O, Seok-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1817-1825
    • /
    • 2000
  • The purpose of this study is to examine the fracture toughness of the welded pipe from the viewpoint of FATT for the S38 and S42 steels used widely as the pipe material. Post weld heat treatment(PW HT) was carried out like following conditions: temperature of 67$0^{\circ}C$, I hour of holding time and cooling in furnace. Fracture toughness was obtained by measuring the crack opening displacement(COD) of the notched specimens over the range of temperature from -14$0^{\circ}C$ to -$25^{\circ}C$. Hardness values at fusion line near around were the highest and the microstructures at welded zone were coarsened. Regardless of the pipe materials, COD and temperature curves of the as-welds were moved toward higher temperature compared with those of the parents. However, COD and temperature curves of the PWHT specimens were positioned at lower temperature compared with those of the as-welds. The more heat input causes to decrease the COD values at the constant temperature. It was verified through the recrystallization treatment that PWHT was attributed to move toward lower temperature region considerably due to the improved plastic deformation at the same applied COD value of 0.3mm and softening effect. In case of the weldment of S38 steel, cleavage fracture was observed at -105$^{\circ}C$ unlike the structural steels, in which brittle fracture mode was generally shown at - 196$^{\circ}C$.

Effect of Paraffin Oil on the Low Temperature Adhesion Properties of CR/SBS Modified Asphalt Sealants (CR/SBS 개질 아스팔트 실란트의 저온접착특성에서 파라핀 오일 첨가에 의한 효과)

  • Kim, Doo Byung;Lee, Dae Woo;Kim, Jong-Seok
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.6-10
    • /
    • 2012
  • The main objective of this work was studying the influence of paraffin oil(PO) on the adhesion properties at low temperature in styrene-butadiene-styrene(SBS) copolymer and crumb rubber(CR) modified asphalt. The temperature susceptibility of SBS/CR asphalt and PO/SBS/CR/asphalt blends were measured by penetration and softening point. Adhesion properties at low temperature and dispersion of modifiers in PO/SBS/CR/asphalt blends were evaluated by universal test machine and florescence microscopy, respectively. The adhesion properties of PO/SBS/CR/asphalt blends at low temperature increased in the proportion of SBS contents with both 5 and 10 wt % of paraffin oil. Results showed that the maximum tensile adhesion strength and toughness energy at $-20^{\circ}C$ were obtained when PO and SBS contents were 10 wt % and 6 wt %, respectively. The addition of PO is effective for enhancing the flexibility of SBS/CR/asphalt blends and leads to the increase of toughness at low temperature.

Optimization of Elastic Modulus and Cure Characteristics of Composition for Die Attach Film (다이접착필름용 조성물의 탄성 계수 및 경화 특성 최적화)

  • Sung, Choonghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.503-509
    • /
    • 2019
  • The demand for smaller, faster, and multi-functional mobile devices in increasing at a rapidly increasing rate. In response to these trends, Stacked Chip Scale Package (SCSP) is used widely in the assembly industry. A film type adhesive called die attach film (DAF) is used widely for bonding chips in SCSP. The DAF requires high flowability at high die attachment temperatures for bonding chips on organic substrates, where the DAF needs to feel the gap depth, or for bonding the same sized dies, where the DAF needs to penetrate bonding wires. In this study, the mixture design of experiment (DOE) was performed for three raw materials to obtain the optimized DAF recipe for low elastic modulus at high temperature. Three components are acrylic polymer (SG-P3) and two solid epoxy resins (YD011 and YDCN500-1P) with different softening points. According to the DOE results, the elastic modulus at high temperature was influenced greatly by SG-P3. The elastic modulus at $100^{\circ}C$ decreased from 1.0 MPa to 0.2 MPa as the amount of SG-P3 was decreased by 20%. In contrast, the elastic modulus at room temperature was dominated by YD011, an epoxy with a higher softening point. The optimized DAF recipe showed approximately 98.4% pickup performance when a UV dicing tape was used. A DAF crack that occurred in curing was effectively suppressed through optimization of the cure accelerator amount and two-step cure schedule. The imizadole type accelerator showed better performance than the amine type accelerator.

Modification of Coal-Tar-Pitch and Carbon Fiber Properties by Polymer Additives (고분자 첨가에 의한 콜타르 핏치의 결정성 및 탄소섬유 물성 변화)

  • Kim, Jung-Dam;Yun, Jae-Min;Lim, Yun-Soo;Kim, Myung-Soo
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.173-181
    • /
    • 2016
  • In order to use coal tar pitch (CTP) as a raw material for carbon fibers, it should have suitable properties such as a narrow range of softening point, suitable viscosity and uniform optical properties. In this study, raw CTP was modified by heat treatment with three types of polymer additives (PS, PET, and PVC) to make a spinnable pitch for carbon fibers. The yield, softening point, C/H ratio, insoluble yield, and meso-phase content of various modified CTPs with polymer additives were analyzed by changing the type of polymer additive and the heat treatment temperature. The purpose of this study was to compare the properties of CTPs modified by polymer addition with those of a commercial CTP. After the pitch spinning, the obtained green fibers were stabilized and carbonized. The properties of the respective fibers were analyzed to compare their uniformity, diameter change, and mechanical properties. Among three polymer additives, PS220 and PET261 pitches were found to be spinnable, but the carbon fibers from PET261 showed mechanical properties comparable with those of a commercial CTP produced by an air-blowing method (OCI284). The CTPs modified with polymer additive had higher ${\beta}$-resin fractions than the CTP with only thermal treatment indicating a beneficial effect of carbon fiber application.

Stability and Characterization of Triethanolamine Type Cation Surfactants (트리에탄올아민형 양이온 계면활성제의 안정성 및 특성 연구)

  • Kim, Byeong-Jo;Kim, Hyeong-Gyu;Lee, Jong-Ki;Moon, Surk-Sik
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.140-144
    • /
    • 2009
  • Triethanolamine-type cationic surfactants were synthesized and their applications were established. The production of mono-, di-, and tri-TEA-EQ (triethanol-amine-esterquater) were dependent on the molar ratio of fatty acid and triethanolamine under the controlled reaction temperature. The structures were elucidated by $H^{1}$ NMR. Long-term stability was dependent on the amount of mono- and tri-TEA-EQ. When the amount of mono-TEA-EQ was increased, long-term stability was increased. However, the more tri-TEA-EQ made long-term stability decreased. Softening was dependent on the amount of saturated fatty acid, and re-wettability was counted on the amount of unsaturated fatty acid. Softening was measured by the method of sense estimation e.g. touching to home-towel. Absorption was determined to calculate the height of water on a towel after treatment.

Pre-heating treatment for Prevention of Tissue Softening of Radish Root Kimchi (예비열처리(豫備熱處理)에 의한 무우김치의 연화방지(軟化防止))

  • Yook, Cheol;Chang, Koom;Park, Kwan-Hwa;Ahn, Seung-Yo
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.447-453
    • /
    • 1985
  • The effects of preheating and calcium chloride on prevention of tissue softening was examined during fermentation and storage of radish root kimchi. In order to find the optimum condition of preheating treatment, activities of pectinesterase (PE) and polygalacturonase (PG) in radish root were measured with respect to $CaCl_2$ concentration and temperature. A maximum firmness was obtained with treatment in 0.05M $CaCl_2$ at $55^{\circ}C$ for 2hr which was optimum conditions for PE activity, while PG was inhibited at the $CaCl_2$ concentration of 0.05M. Firmness of radish root kimchi prepared by preheating treatment was decreased little during fermentation and storage for 25 days.

  • PDF

Shear Strength Property of Wood Treated by Steam Treatment at High Temperature (고온수증기처리 목재의 전단강도 특성)

  • Kim, Jung-Hwan;Lee, Weon-Hee;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.9-15
    • /
    • 2001
  • This study deals with shear strength test for Pinus densiflora and Pinus radiata treated at above $100^{\circ}C$ by heat steam. Treatment conditions of this experiment were operated at regular intervals of $20^{\circ}C$ at temperatures up to $200^{\circ}C$ for 5, 10, 20 and 30 minutes by using the steam-explosion apparatus. It was examined, at high temperatures, degradation of some compounds from wood composition could lead to reduced the shear strength through heat steaming processes and play a large part in the plastic process of solid wood materials. It could be estimated that the shear strength of woods were gradually reduced by heat steaming time. Remarkable reduction of shear strength of woods was observed with increasing steaming temperatures above 10 minutes steaming time. Furthermore, this phenomenon shows a tendency to increase with higher temperatures. Therefore, it was considered that the softening by steaming treatment at high temperatures is necessary for the improvement on the wood processing ability.

  • PDF