• Title/Summary/Keyword: Softening effect

Search Result 394, Processing Time 0.043 seconds

Effect of Carbon Potential on the Carbide Formation and Pitting Fatigue Strength of Supercarburized Steel (고농도 침탄강의 탄화물 형성과 피팅 피로강도에 미치는 탄소 포텐셜의 영향)

  • So, Sangjin;Shin, Jungho;Lim, Jae-Won;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.3
    • /
    • pp.113-123
    • /
    • 2016
  • In the present work, we investigated the effects of the carbon potential on the formation of carbide at the carburized surface and anti-pitting fatigue strength in the supercarburized steels. Two low carbon steels with different Cr concentrations were adopted and the repeated supercarburizing treatment carried out with the different carbon potential conditions. The microstructure and carbides at the supercarburized surface were observed by using optical microscope and scanning electron microscope. The microhardness test was performed and the hardness distribution and the effective case depth at the supercarburized surface were discussed. The roller pitting fatigue test was carried out and the fatigue strength was evaluated with different the carbon potential conditions. The microstructure of the fatigue specimen surface was observed by means of scanning electron microscope and scanning transmission electron microscope. Depending on the chemical composition of the steels and the carbon potential condition, the resistance of temper softening and pitting failure was influenced due to the carbide distribution and the formation of coarse network carbide. Thus, it was confirmed that the control of the carbide formation is a key factor to improve the anti-pitting fatigue strength in the supercarburized steels.

Characterization of Repairing PVC profile for Trenchless Sewer Pipeline (비굴착 하수관로용 PVC 프로파일 보수재 특성 평가)

  • Park, Joon-Ha;Jeon, Sang-Ryeol;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4977-4983
    • /
    • 2015
  • The full depth excavation induces couple of technical and social problems like increase of construction cost and time for excavation and backfill, increase of public complains and delay of traffic, and so force. In order to overcome these problems, lots of laboratory tests were carried out for sewer pipeline of maintenance materials with trenchless methods. The testing materials are PVC strip and then the lab tests were followed by Korean Standard. We will treat the structure safety and pipe integrity of PVC profile more excellent than the profile have application to SPR. There is no side-effect to process and to satisfy the criteria of tensile strength, impact strength and softening temperature. The profile with resin adhesive showed no leakage of water at specific pressure.

Effect of Lu3Al5O12:Ce3+ and (Sr,Ca)AlSiN3:Eu2+ Phosphor Content on Glass Conversion Lens for High-Power White LED

  • Lee, Hyo-Sung;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeon, Dae-Woo;Jung, Hyun-Suk;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.229-233
    • /
    • 2015
  • Currently, the majority of commercial white LEDs are phosphor converted LEDs made of a blue-emitting chip and YAG yellow phosphor dispersed in organic silicone. However, silicone in high-power devices results in long-term performance problems such as reacting with water, color transition, and shrinkage by heat. Additionally, yellow phosphor is not applicable to warm white LEDs that require a low CCT and high CRI. To solve these problems, mixing of green phosphor, red phosphor and glass, which are stable in high temperatures, is common a production method for high-power warm white LEDs. In this study, we fabricated conversion lenses with LUAG green phosphor, SCASN red phosphor and low-softening point glass for high-power warm white LEDs. Conversion lenses can be well controlled through the phosphor content and heat treatment temperature. Therefore, when the green phosphor content was increased, the CRI and luminance efficiency gradually intensified. Moreover, using high heat treatment temperatures, the fabricated conversion lenses had a high CRI and low luminance efficiency. Thus, the fabricated conversion lenses with green and red phosphor below 90 wt% and 10 wt% with a sintering temperature of $500^{\circ}C$ had the best optical properties. The measured values for the CCT, CRI and luminance efficiency were 3200 K, 80, and 85 lm/w.

The Properties of P/C Blended Fabrics Treated with the Water Repellent of Acrylic Copolymer and Additives (아크릴 공중합체형 발수제로 처리된 P/C 혼방직물의 물성연구)

  • Park, Hong-Soo;Kim, Young-Geun;Choung, Young-Sook;Choi, Bong-Jong;Lee, Ki-Chang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.9-20
    • /
    • 1991
  • In the preparation of acrylic water repellent(EDLWC). quaternized 2-diethylarrunoethylmethacrylate-stearylmethacrylate copolymer (DSACC) and quaternized 1-Iaurovlbis(aminoethyl)-2-dodecylimidazoline(LDDIC) were selected as a basic resin and the improving agent such as softening effect and hydrostatic pressure of the water repellent. EDLWC was prepared by blending waxes and emulsifier for waxes with various ratio to DSACC and LDDIC. As the results of the measurement of water repellency, washable, tear strength and crease recovery to polyester-cotton(P/C) blended fabrics treated with EDLWC only or addition of textile finishing resin, the physical properties were increased. Sodium acetate was the most effective catalyst in the water repellency among the various kinds of catalyst. and the reasonable concentration of the catalyst was 1. 4 wt%. EDLWC was confirmed as durable water repellent with the results of making little difference of water repellency as ${\pm}5$ point after and before washing. The reaction mechanism between P/C blended fabrics and EDLWC in the presence of catalyst was proposed. And also, the longitudinal view of the P/C blended fabrics treated with water repellent was observed with scanning electron microscope.

A STUDY ON THE BOND STRENGTH OF REBASE RESIN TO DENTURE BASE RESIN BY APPLICATION OF PRIMERS (레진 표면 처리제의 도포에 따른 의치상 레진과 개상용 레진의 결합강도에 관한 연구)

  • Moon, Byoung-Jun;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.50-63
    • /
    • 1998
  • This study investigated the effects of resin surface primers for rebase resins on the surface texture of denture base resins by the use of scanning electron microscopy. This study also evaluated the bond strength of rebase resins to denture base resin. The denture base resin in this study was Vertex RS (Dentimex Co., Ltd., Holland). The rebase resins used were Tokuso Rebase (Tokuyama Co., Ltd., Japan), Metabase (Sun Medical Co., Ltd., Japan), New True Liner(Harry J, Bosworth Co., Ill.), and Reverse (Nissin Co., Ltd., Japan). The test samples were divided into four parts: Group 1 : Treated with primer with brush. Group 2 : Immersed in the primer for 5 seconds. Group 3 : Immersed in the primer for 10 seconds. Group 4 : Immersed in the primer for 30 seconds. Control group : not treated with primer The results were as follows; 1. The bond strength of rebase resins to denture base resin is increased by application of primers. 2. Regardless of the rebase resin type, there was no significant difference among the bond strength in groups G1, G2, G3, G4. There was a significant difference with the control. (P<0.05) 3. Regardless of each group, the bond strength according to the rebase resin type was decreased in the following order: Tokuso Rebase, New Tru Liner, Reverse and then Metabase. 4. Under the scanning electron microscope, brush application produced a softening of the denture base surface. After immersion, all primers produced a spongelike structure on the denture base resin surface. The results of this study suggest that primers produce a significant effect by means of brush application, therefore it is recommended as the most convenient and logical procedure for application of the primers.

  • PDF

Electro-deposition and Crystallization Behaviors of Cr-C and Cr-C-P Alloy Deposits Prepared by Trivalent Chromium Sulfate Bath (황화물계 3가 크롬도금욕에서 크롬-탄소 및 크롬-탄소-인 합금도금의 전착과 결정화거동)

  • Kim, Man;Kim, Dae-Young;Park, Sang-Eon;Kwon, Sik-Chul;Choi, Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.80-85
    • /
    • 2004
  • Chromium-carbon (Cr-C) and chromium-carbon-phosphorus (Cr-C-P) alloy deposits using trivalent chromium sulfate baths containing potassium formate were prepared to study their current efficiency, hardness change and phase transformations behavior with heat treatment, respectively. The current efficiencies of Cr-C and Cr-C-P alloy deposits increase with increasing current density in the range of 15-35 A/dm$^2$. Carbon content of Cr-C and phosphorous of Cr-C-P layers decreases with increasing current density, whereas, the carbon content of Cr-C-P layer is almost constant with the current density. Cr-C deposit shows crystallization at $400^{\circ}C$ and has (Cr+Cr$_{ 23}$$C_{6}$) phases at $800^{\circ}C$. Cr-C-P deposit shows crystallization at $600^{\circ}C$ and has (Cr+Cr$_{23}$ $C_{6}$$+Cr_3$P) phases at $800^{\circ}C$. The hardness of Cr-C and Cr-C-P deposits after heating treatment for one hour increase up to Hv 1640 and Hv 1540 and decrease about Hv 820 and Hv 1270 with increasing annealing temperature in the range of $400~^{\circ}C$, respectively. The hardness change with annealing is due to the order of occurring of chromium crystallization, precipitation hardening effect, softening and grain growth with temperature. Less decrease of hardness of Cr-C-P deposit after annealing above $700^{\circ}C$ is related to continuous precipitation of $Cr_{23}$ $C_{6}$ and $Cr_3$P phases which retard grain growth at the temperature.

Nonlinear Fracture Analysis of Concrete Structures Based on Stress-Strain Relation (응력(應力)-변형도관계(變形度關係)를 이용(利用)한 콘크리트 구조(構造)의 비선형파괴해석(非線型破壞解析))

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.1-11
    • /
    • 1984
  • Developed is a nonlinear fracture theory which can model the complex fracture behavior of concrete. This theory is based on the nonlinear behavior due to progressive microcracking and strain-softening in the fracture process zone of concrete cracks. The simplified realistic fracture model which preserves the same fracture energy for the different fracture process zone widths is also derived. By modeling fracture through stress-strain behavior, the effect of compressive stresses parallel to the crack plane can be easily taken into account. The comparisons of the present theory with valuable fracture test data available in the literature show good agreements, and the existing linear theory exhibits in many cases large deviations from the actual test results. A simple approximate formula for the fracture energy of concrete which should, be necessary for the fracture analysis of concrete structures is derived. Finally, the application of fracture theory to reinforced concrete and the necessity of further research are discussed.

  • PDF

A Study for Joining of Silicon Nitride with Crystallized Glass Solder of $SiO_2-Al_2O_3-MgO$ System ($SiO_2-Al_2O_3-MgO$계 결정화 유리 솔더에 의한 질화규소의 접합에 관한 연구)

  • 안병국
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.107-113
    • /
    • 2003
  • Joining of $Si_3N_4$ to $Si_3N_4$ with crystallized glass solder was studied. $SiO_2-Al_2O_3-MgO$ glass with $P_2O_5$ as a crystallizing reagent was used as a solder. To improve the hish temperature toughness of joined specimen, two stage heat treatment was applied to Joined sample for the crystallization of joined layer, Two factors, i.e. thickness of soldered layer and crystallization were taken and thier effects on joining strength were investigated by a SEM-EDX observation of joined interface and bending strength both at room and elevated temperatures. Obtained results are summarized as follows: (1) Nitrogen diffused from $Si_3N_4$ to solder during the Joining process. Average amount of nitrogen in soldered layer depended on the thickness of the soldered layer and increased with decrease of the thickness. (2) Joining strength of the specimen having a thinner soldered layer was stronger than that of thicker layer. This can be mainly attributed to the difference of the nitrogen content in the soldered layer. (3) Higher content of nitrogen in solder brought forth higher viscosity of the solder. Hence the crystallization of the solder become more difficult in thinner layer of the solder than thicker one. (4) Thus, the effect of crystallization was evaluated mostly by the thicker layer specimen. Crystallization of soldered layer improved markedly the fracure strength of joining at higher temperatures than the softening temperature of glass solder.

Removal of Hardness Ions by Crossflow Ceramic Ultrafiltration Process with Adding Lime-soda Ash (석회-소다회를 주입한 십자흐름 세라믹 한외여과공정을 이용한 경도 이온 제거)

  • Park, Jin-Yong;Park, Bo-Reum
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.191-196
    • /
    • 2007
  • In the study, excess of lime-soda ash(L-S) was added to groundwater for chemical precipitation of hardness ions. After formation of the coagulated flocs, sedimentation step was replaced with crossflow ultrafiltration(UF) process using tubular ceramic membrane. As results, our treated water was below total hardness(TH) 10 mg/L as $CaCO_3$ from groundwater using washing water in a soymilk factory. Then, we investigated the change of permeat flux(J) and dimensionless permeate flux($J/J_0$) during experiments for variations of TMP(Trans-membrane pressure) or flow rate, to see effect of TMP or flow rate on membrane fouling by the coagulated Inorganic flocs. In the result, membrane fouling and rejection rate of total hardness were not affected by TMP and flow rate variations in the range of our experiments.

Effect of Humidity on the Storage Life of Satsuma Mandarin (저장습도가 온주밀감의 저장에 미치는 영향)

  • Lee, Sang-Yang;Koh, Jeong-Sam
    • Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.223-228
    • /
    • 1999
  • The storage effects of satsuma mandarin(Citrus unshiu Marc. var. miyagawa) by humidity control during storage; 90% relative humidity (RH) and 85% RH at $3^{circ}C$, and room temperature were investigated. After 98 days' storage, weight losses were 3.40% for 90% RH, 6.92% for 85% RH, and 11.87% for room temperature storage. Decay ratio was increased rapidly from 3.87% on 98 days' to 48.75% on 126 days' storage for 90% RH. Soluble solids and flesh ratio were declined gradually, but the differences were not significantly. Firmness of fruits was continuously reduced during storage, especially on room temperature storage by the softening of the fruits. Acid content and vitamin C were gradually reduced during storage. Coloration was continuously progressed on room temperature, compared to cold storage. In order to keep freshness of the fruits, optimum storage period of early variety of Satuma mandarin was regarded for 100 days at $3^{circ}C$, 85% RH on the basis of sensory evaluation and chemical compositions.

  • PDF