• Title/Summary/Keyword: Soft-thresholding

Search Result 29, Processing Time 0.023 seconds

Analysis of QRS-wave Using Wavelet Transform of Electrocardiogram (웨이블릿 변환을 이용한 심전도의 QRS파 신호 분석)

  • Choi, Chang-Hyun;Kim, Yong-Joo;Kim, Tae-Hyeong;Ahn, Yong-Hee;Shin, Dong-Ryeol
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.317-325
    • /
    • 2008
  • The electrocardiogram (ECG) measurement system consists of I/O interface to input the ECG signals from two electrodes, FPGA (Field programmable gate arrays) module to process the signal conditioning, and real time module to control the system. The algorithms based on wavelet transform were developed to remove the noise of the ECG signals and to determine the QRS-waves. Triangular wave tests were conducted to determine the optimal factors of the wavelet filter by analyzing the SNRs (signal to noise ratios) and RMSEs (root mean square errors). The hybrid rule, soft method, and symlets of order 5 were selected as thresholding rule, thresholding method, and mother wavelet, respectively. The developed wavelet filter showed good performance to remove the noise of the triangular waves with 10.98 dB of SNR and 0.140 mV of RMSE. The ECG signals from a total of 6 subjects were measured at different measuring postures such as lying, sitting, and standing. The durations of QRS-waves, the amplitudes of R-waves, the intervals of RR-waves were analyzed by using the finite impulse response (FIR) filter and the developed wavelet filter. The wavelet filter showed good performance to determine the features of QRS-waves, but the FIR filter had some problems to detect the peaks of Q and S waves. The measuring postures affected accuracy and precision of the ECG signals. The noises of the ECG signals were increased due to the movement of the subject during measurement. The results showed that the wavelet filter was a useful tool to remove the noise of the ECG signals and to determine the features of the QRS-waves.

Reduction of Quantization Noise in Block-Based Video Coding Using Wavelet Transform (블록기반 동영상 부호화에서의 웨이브렛 변환을 이용한 양자화 잡음 제거)

  • 문기웅;장익훈;김남철
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.155-158
    • /
    • 2000
  • In this paper, the quantization noise in block-based video coding is analyzed, and a post-processing method based on the analysis is presented for reducing the quantization noise by using a wavelet transform(WT). In the proposed method, the quantization noise is considered as the sum of a blocking noise expressed as a deterministic profile and the random remainder noise. Each noise is removed in a viewpoint of image restoration using a 1-D WT, which yields a regularized differentiation. The blocking noise first is reduced by weakening the strength of each blocking noise component that appears as an impulse in the first scale wavelet domain. The impulse strength estimation is performed using median filter, quantization parameter(QP), and local activity. The remainder noise, which is considered as a white noise at non-edge pixels, then is reduced by soft-thresholding. The experimental results show that the proposed method yields better performance in terms if subjective quality as well as PSNR performance over VM post-filter in MPEG-4 for all test sequences of various compression ratios. We also present a fast post-processing in spatial domain equivalent to that in wavelet domain for real-time application.

  • PDF

Adaptive Noise Reduction of Speech using Wavelet Transform (웨이브렛 변환을 이용한 음성의 적응 잡음 제거)

  • Im Hyung-kyu;Kim Cheol-su
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.271-278
    • /
    • 2005
  • This paper proposed a new time adapted threshold using the standard deviations of Wavelet coefficients after Wavelet transform by frame scale. The time adapted threshold is set up using the sum of standard deviations of Wavelet coefficient in level 3 approximation and weighted level 1 detail. Level 3 approximation coefficients represent the voiced sound with low frequency and level 1 detail coefficients represent the unvoiced sound with high frequency. After reducing noise by soft thresholding with the proposed time adapted threshold, there are still residual noises in silent interval. To reduce residual noises in silent interval, a detection algorithm of silent interval is proposed. From simulation results, it is demonstrated that the proposed algorithm improves SNR and MSE performance more than Wavelet transform and Wavelet packet transform does.

  • PDF

Voice Activity Detection Algorithm using Wavelet Band Entropy Ensemble Analysis in Car Noisy Environments (자동차 잡음 환경에서 웨이브렛 밴드 엔트로피 앙상블 분석을 이용한 음성구간 검출 알고리즘)

  • Lee, G.H.;Lee, Y.J.;Kim, M.N.
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1005-1017
    • /
    • 2013
  • Voice activity detection is very important process that voice activity separated form noisy speech signal for speech enhance. Over the past few years, many studies have been made on voice activity detection, but it has poor performance in low signal to noise ratio environment or fickle noise such as car noise. In this paper, it proposed new voice activity detection algorithm using ensemble variance based on wavelet band entropy and soft thresholding method. We conduct a survey in a lot of signal to noise ratio environment of car noise to evaluate performance of the proposed algorithm and confirmed performance of the proposed algorithm.

Postprocessing in Block-Based Video Coding Based on a Quantization Noise Model (양자화 잡음 모델에 근거한 블록기반 동영상 부호화에서의 후처리)

  • 문기웅;장익훈;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.8B
    • /
    • pp.1129-1140
    • /
    • 2001
  • 본 논문에서는 블록기반 동영상 부호화에서 나타나는 양자화 잡음을 그 특성에 맞게 모델링을 하고, 이를 기반으로 웨이블렛 변환(wavelet transform)을 이용하여 양자화 잡음을 제거하는 후처리 방법을 제안한다. 제안된 방법에서는 양자화 잡음을 특정 프로화일(profile)로 표현되는 블록화 잡음과 비에지 화소(non-edge pixel)에서 백색 가우시안 특성을 가지는 나머지 잡음의 합으로 모델링 한다. 이러한 양자화 잡음의 모델을 기반으로 정칙화 미분(regularized differentiation)을 표현하는 Mallat의 1차원 웨이브렛 변환을 이용하여 영상복원 관점에서 각각의 잡음을 제거한다. 먼저, 웨이브렛 영역의 블록경계에서 임펄스로 나타나는 블록화 잡음 성분들의 크기를 추정하여 줄임으로 해서 블록화 잡음을 제거한다. 이때 임펄스 크기의 추정은 메디안 필터와 양자화 파라미터(quantization parameter), 그리고 국부 활동도(local activity)를 이용하여 이루어진다. 그리고 나머지 잡음은 비에지 화소에서 연역치화(soft-thresholding)을 수행함으로써 제거한다. 이러한 후처리 방법의 구현은 실시간 응용을 위해 웨이브렛 필터를 이용하여 근사적으로 공간 영역에서 이루어진다. 실험 결과, 제안된 방법이 다양한 영상과 압축률에 대해 MPEG-4 VM(verification model) 후처리 필터(post-filter)보다 PSNR 성능뿐만 아니라 주관적 화질면에서도 우수함을 확인하였다.

  • PDF

Denoising on Image Signal in Wavelet Basis with the VisuShrink Technique Using the Estimated Noise Deviation by the Monotonic Transform (웨이블릿 기저의 영상신호에서 단조변환으로 추정된 잡음편차를 사용한 VisuShrink 기법의 잡음제거)

  • 우창용;박남천
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.111-118
    • /
    • 2004
  • Techniques based on thresholding of wavelet coefficients are gaining popularity for denoising data because of the reasonable performance at the low complexity. The VisuShrink which removes the noise with the universal threshold is one of the techniques. The universal threshold is proportional to the noise deviation and the number of data samples. In general, because the noise deviation is not known, one needs to estimate the deviation for determining the value of the universal threshold. But, only for the finest scale wavelet coefficients, it has been known the way of estimating the noise deviation, so the noise in coarse scales cannot be removed with the VisuShrink. We propose here a new denoising method which removes the noise in each scale except the coarsest scale by Visushrink method. The noise deviation at each band is estimated by the monotonic transform and weighted deviation, the product of estimated noise deviation by the weight, is applied to the universal threshold. By making use of the universal threshold and the Soft-Threshold technique, the noise in each band is removed. The denoising characteristics of the proposed method is compared with that of the traditional VisuShrink and SureShrink method. The result showed that the proposed method is effective in denoising on Gaussian noise and quantization noise.

  • PDF

A Study on the NC Embedding of Vision System for Tool Breakage Detection (공구파손감지용 비젼시스템의 NC실장에 관한 연구)

  • 이돈진;김선호;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.369-372
    • /
    • 2002
  • In this research, a vision system for detecting tool breakage which is hardly detected by such indirect in-process measurement method as acoustic emission, cutting torque and motor current was developed and embedded into a PC-NC system. The vision system consists of CMOS image sensors, a slit beam laser generator and an image grabber board. Slit beam laser was emitted on the tool surface to separate the tool geometry well from the various obstacles surrounding the tool. An image of tool is captured through two steps of signal processing, that is, median filtering and thresholding and then the tool is estimated normal or broken by use of change of the centroid of the captured image. An air curtain made by the jetting high-pressure air in front of the lens was devised to prevent the vision system from being contaminated by scattered coolant, cutting chips in cutting process. To embed the vision system to a Siemens PC-NC controller 840D NC, an HMI(Human Machine Interface) program was developed under the Windows 95 operating system of MMC103. The developed HMI is placed in a sub window of the main window of 840D and this program can be activated or deactivated either by a soft key on the operating panel or M codes in the NC part program. As the tool breakage is detected, the HMI program emit a command for automatic tool change or send alarm to the NC kernel. Evaluation test in a high speed tapping center showed the developed system was successful in detection of the small-radius tool breakage.

  • PDF

Texture Feature-Based Language Identification Using Gabor Feature and Wavelet-Domain BDIP and BVLC Features (Gabor 특징과 웨이브렛 영역의 BDIP와 BVLC 특징을 이용한 질감 특징 기반 언어 인식)

  • Jang, Ick-Hoon;Lee, Woo-Shin;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.76-85
    • /
    • 2011
  • In this paper, we propose a texture feature-based language identification using Gabor feature and wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features. In the proposed method, Gabor and wavelet transforms are first applied to a test image. The wavelet subbands are next denoised by Donoho's soft-thresholding. The magnitude operator is then applied to the Gabor image and the BDIP and BVLC operators to the wavelet subbands. Moments for Gabor magnitude image and each subband of BDIP and BVLC are computed and fused into a feature vector. In classification, the WPCA (whitened principal component analysis) classifier, which is usually adopted in the face identification, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method yields excellent language identification with rather low feature dimension for a document image DB.

Improvement of Steganalysis Using Multiplication Noise Addition (곱셉 잡음 첨가를 이용한 스테그분석의 성능 개선)

  • Park, Tae-Hee;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.4
    • /
    • pp.23-30
    • /
    • 2012
  • This paper proposes an improved steganalysis method to detect the existence of secret message. Firstly, we magnify the small stego noise by multiplying the speckle noise to a given image and then we estimate the denoised image by using the soft thresholding method. Because the noises are not perfectly eliminated, some noises exist in the estimated cover image. If the given image is the cover image, then the remained noise will be very small, but if it is the stego image, the remained noise will be relatively large. The parent-child relationship in the wavelet domain will be slighty broken in the stego image. From this characteristic, we extract the joint statistical moments from the difference image between the given image and the denoised image. Additionally, four statistical moments are extracted from the denoised image for the proposed steganalysis method. All extracted features are used as the input of MLP(multilayer perceptron) classifier. Experimental results show that the proposed scheme outperforms previous methods in terms of detection rates and accuracy.