• Title/Summary/Keyword: Soft switched converter

Search Result 66, Processing Time 0.026 seconds

A New Soft-switched PWM Boost Converter with a Lossless Auxiliary Circuit (스위칭 손실 없는 보조회로를 이용한 고효율 부우스트 컨버터 설계)

  • Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.149-158
    • /
    • 2006
  • A soft-switching scheme for the PWM boost converter, ZCT (Zero current transition : ZCT) boost converter Is newly proposed to obtain the desirable features of both the conventional BWM boost and resonant converters such as easy of control, reduced switching losses and stresses, an4 low EMI. In order to achieve the soft-switching action, the proposed scheme employs an auxiliary circuit, which is added to the conventional boost converter and used to achieve soft-switching for both the main switch and the output diode while not incurring any additional losses due to auxiliary circuit itself. The basic operations, in this paper, we discussed and design guidelines are presented. Through a 100kHz, 60-W prototype, the usefulness of the proposed scheme is verified.

Converter for Switched reluctance Motor Applied Soft Switching Mode by Partial Resonant Mothod (부분공진 소프트 수위칭기법을 적용한 스윗치드 리럭턴스 모터의 구공회로)

  • Kim, J.S.;Lee, B.D.;Kim, S.D.;Jung, G.H.;Kang, U.J.;Koh, H.S.;Lee, S.H.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2103-2105
    • /
    • 1998
  • Switched Reluctance Motor is simple structure which used Accel/Decel application field because of cheap cost and High efficiency. For driving this motor, it is essential to need position sensor and driving converter. so, many topology and sensor have been studied untill now. Asymmetric Bridge Converter which has been known for the best control and efficiency is used chopping to control current of motor coil according to changing of motor speed. But this is embossed as a fault because it come to bring switching loss due to rapid switching frequency. In this paper, I applied to Soft Switching Mode by Partial Resonant Method to compensate these fault and to show the usabilityness of low switching device.

  • PDF

Analysis of Resonant Characteristics in Asymmetrical Control Half Bridge Converter (하프 브리지 컨버터의 비대칭 제어 공진 특성 분석)

  • Ahn J.R.;Kwon M.I.;Jang D.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.58-61
    • /
    • 2003
  • In this paper, resonant Characteristics of the soft switched asymmetrical half bridge converter is analysis. The operation principle for proposed converter is explained in steady state and its circuit is analyzed by means of equivalent circuit. Experimental results carried out on a system prototype are included in this paper.

  • PDF

A Fully Soft Switched Full Bridge DC-DC converter (보조회로도 영전압영전류스위칭하는 DC-DC 변환기)

  • Jeon, Seong-Jeub;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2512-2514
    • /
    • 1999
  • A new zero voltage and zero current switching(ZVZCS) full bridge DC-DC converter with transformer isolation is proposed for arc welding machines. The proposed DC-DC converter uses an auxiliary transformer to obtain ZCS for leading leg, which provides load current control capability even in short circuit condition. The auxiliary circuit also operates in ZVZCS mode. The power rating of the auxiliary transformer is about 10% of the main transformer. The operation is verified by experiments for 12[KW] prototype.

  • PDF

A New Approach to Reduced-Order Modeling of Multi-Module Converters

  • Park, Byung-Cho
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.92-98
    • /
    • 1997
  • This paper presents a new approach to obtaining a reduced-order model for multi-module converters. The proposed approach can be used to derive the reduced-order model for a wide class of multi-module converters including pulse-width-modulated (PWM) converters, soft-switched PWM converters, and resonant converters. The reduced-order model has the structure of a conventional single-module converter while preserving the dynamics of the original multi-module converter. Derivation procedures and the use of the reduced-order model is demonstrated using a three-module boost converter.

  • PDF

Isolated DC/DC Converter with Very Wide Input Voltage Ranges for Emergency Power Back-up System(EPBS) (비상전원 공급장치를 위한 넓은 입력전압 범위를 갖는 절연형 DC/DC 컨버터)

  • Chae, Hyung-Jun;Kim, Kyoung-Dong;Oh, Hyung-Rock;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.334-341
    • /
    • 2011
  • This paper presents a design and implementation of DC/DC converter with very wide input voltage ranges for EPBS whose input voltage is from 30V to 400V and output voltage is 48V. This converter is comprised of two stages that one is for control and the other is for only galvanic isolation. The proposed converter uses the hard-switched buck-boost topology for control purpose and soft-switched LLC resonant converter for isolation. The proposed converter has been verified with 300W design.

Power Flow Control of Four Channel Resonant Step-Down Converters

  • Litvani, Lilla;Hamar, Janos
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1393-1402
    • /
    • 2019
  • This paper proposes a new power flow control method for soft-switched, four channel, five level resonant buck dc-dc converters. These converters have two input channels, which can be supplied from sources with identical or different voltages, and four output channels with arbitrary output voltages. They are specially designed to supply multilevel inverters. The design methodology for their power flow control has been developed considering a general case when the input voltages, output voltages and loads can be asymmetrical. A special emphasize is paid to the limitations and restrictions of operation. The theoretical studies are confirmed by numerical simulations and laboratory tests carried out at various operation points. Exploiting the advantages of the newly proposed power control strategy, the converter can supply five level inverters in dc microgrids, active filters, power factor correctors and electric drives. They can also play an interfacing role in renewable energy systems.

Power Factor Correction Circuit with a Soft-switched Boost Scheme (스위칭 손실을 최소화한 부스트 방식의 역률 개선 회로)

  • Lee, Hyo-Jae;Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.122-129
    • /
    • 2011
  • In this paper, a new power factor correction circuit(PFC) based on a soft-switched boost scheme is proposed. Except for some soft-switching transition intervals, it operates exactly like the conventional boost scheme. Thus the desirable features of both high efficiency and easy control can be obtained. The design guidelines are suggested to achieve high efficiency. To verify the superior performance of the proposed circuit, experiment and simulation is carried out.

Soft-Switched PWM DC-DC High-Power Converter with Quasi Resonant-Poles and Parasitic Reactive Resonant Components of High-Voltage Transformer (부분 공진형 소프트 스위칭 PWM DC-DC 고전압 컨버터)

  • 김용주;신대철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.384-394
    • /
    • 1999
  • This paper deals with a fixed frequency full-bridge inverter type DC-DC high-power converter with high frequency high voltage(HFHV) transformer-coupled stage, which operates under quasi-resonant ZVS transition priciple in spite of a wide PWM-based voltage regulation processing and largely-changed load conditions. This multi-resonant(MR) converter topology is composed of a series capacitor-connected parallel resonant tank which makes the most of parasitic circuit reactive components of HFHV transformer and two additional quasi-resonant pole circuits incorporated into the bridge legs. The soft-switching operation and practical efficacy of this new converter circuit using the latest IGBTs are actually ascertained through 50kV trially-produced converter system operating using 20kHz/30kHz high voltage(HV) transformers which is applied for driving the diagnostic HV X-ray tube load in medical equipments. It is proved from a practical point of view that the switching losses of IGBTs and their electrical dynamic stresses relating to EMI noise can be considerably reduced under a high frequency(HF) switching-based phase-shift PWM control process for a load setting requirements.

  • PDF

High Gain Soft switching Bi-directional Converter for Eco-friendly Vehicle HDC (친환경 자동차 HDC를 위한 고승압 소프트스위칭 양방향 컨버터)

  • Oh, Se-Cheol;Park, Jun-Sung;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.322-329
    • /
    • 2012
  • This paper proposes a non-isolated bidirectional soft-switching converter with high voltage for high step-up/down and high power applications. Compared to the conventional boost converter the proposed converter can achieve approximately doubled voltage gain using the same duty cycle. The voltage ratings of the switch and diode are reduced to half, which result in the use of devices with lower $R_{DS(ON)}$ and on drop leading to reduced conduction losses. Also, voltage ratings of the passive components are reduced, and therefore the total energy volume is reduced to half. Further, the switch is turned on with ZVS in the CCM operation which results in negligible surge caused leading to reduced switching losses. The validity of the proposed converter is proved through a 10kW prototype.