• Title/Summary/Keyword: Soft engineering

Search Result 3,307, Processing Time 0.038 seconds

Soft Optical Waveguide Sensors Tuned by Reflective Pigmentation for Robotic Applications (로봇 어플리케이션을 위해 반사 색소로 조정된 소프트 광도파로 센서)

  • Jamil, Babar;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Soft robotics has attracted a huge amount of interest in the recent decade or so, be it either actuators or sensors. Recently, a soft optical waveguide sensor has proven its effectiveness for various sensing applications such as strain, force, and bending measurements. The operation principle of the waveguide is simple, but the present technology is far too much complex to manufacture the waveguide. The waveguide fails to attract various practical applications in comparison to other types of sensors despite its superior safety and ease working principle. This study pursues to develop the soft sensors based on the optical phenomena so that the waveguide can be easily manufactured and its design can be conducted. Several physical properties of the waveguide are confirmed through the repetitive experiments in the aspects of strain, force, and bending of the waveguide. Finally, the waveguide sensor is embedded inside the actuator to verify the effectiveness of the proposed waveguide as well as to extend the application fields of the waveguide sensor.

A Ringing Surge Clamper Type Active Auxiliary Edge-Resonant DC Link Snubber-Assisted Three-Phase Soft-Switching Inverter using IGBT-IPM for AC Servo Driver

  • Yoshitsugu, Junji;Yoshida, Masanobu;Hiraki, Eiji;Inoue, Kenji;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.115-124
    • /
    • 2002
  • This paper presents an active auxiliary edge-resonant DC link snubber with a ringing surge damper and a three-phase voltage source type zero voltage soft-switching inverter with the resonat snubber treated here for the AC servo motor driver applications. The operation of the active auxiliary edge-resonant DC link snubber circuit with PWM voltage is described, together with the practical design method to select its circuit parameters. The three-phase voltage source type soft-switching inverter with a single edge-resonant DC link snubber treated here is evaluated and discussed for the small-scale permanent magnet (PM) type-AC servo motor driver from an experimental point of view. In addition to these, the AC motor stator current and its motor speed response for the proposed three-phase soft-switching inverter employing Intelligent Power Module(IPM) based on IGBTS are compared with those of the conventional three-phase hard-switching inverter using IPM. The practical effectiveness of the three-phase soft-switching inverter-fed permanent magnet type AC motor speed tracking servo driver is proven on the basis of the common mode current in a novel type three-phase soft-switching inverter-fed AC motor side and the conductive noise on the mains terminal interface voltage as compared with those of the conventional three-phase hard-switching inverter-fed permanent magnet type AC servo motor driver for the speed tracking applications.

Series Load Resonant Soft-Switching PWM High Frequency Inverter with Auxiliary Active Edge-Resonant Snubber

  • Saha, Bishwajit;Kim, Hun-Ho;Han, Ho-Dong;Kwon, Soon-Kurl;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.278-280
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbingcircuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft- switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

Three-Phase Soft Switching Sinewave Inverter with Bridge Power Module Package Configurated Auxiliary Resonant AC Link Snubber

  • Iyomori Hisashi;Nagai Shin-ichiro;Shiraishi Kazuhiro;Ahmed Tarek;Eiji Hiraki;Mutsuo Nakaoka
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.507-510
    • /
    • 2003
  • This paper presents a novel prototype of tile three-phase bridge power block module type a auxiliary resonant AC link snubber circuit, which is effectively used for the three-phase voltage source type sinewave soft switching PWM inverter using IGBTs. Its operating principle Is described for current source load model, along with its practical design approach based on the simulation data. The performance evaluation of the three-phase voltage source type snewave soft switching PWM inverter incorporating a single three-phase bridge mo여le of active auxiliary resonant AC link snubber treated here Is illustrated, which is concerned with power duality efficiency power loss analysis. This inverter is discussed as compared with those of tile three-phase voltage source type sinewave hard switching PWM inverter. The power loss analysis of this soft switching PWM Inverter using IGBT power modules is evaluated on the basis of the measured v-i characteristics and switching power losses of IGBT, and antiparaliel diodes. The practical effectiveness of this inverter is proven by the power loss analysis for distributed power supply.

  • PDF

Multi-Phase Interleaved ZVT Boost Converter With a Single Soft-Switching Cell (단일 소프트 스위칭 셀을 가진 다상 Interleaved ZVT Boost 컨버터)

  • Lee, Joo-Seung;Hwang, Yun-Seong;Kang, Sung-Hyun;Kwon, Man-Jae;Jang, Eunsu;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.247-255
    • /
    • 2022
  • This paper proposes a multiphase interleaved zero-voltage-transition boost converter with a single soft-switching cell for high-voltage DC-DC converter (HDC) of fuel cell systems. The proposed single soft-switching cell structure can reduce the system volume by minimizing the passive and active elements added even in the multiphase-interleaved structure. To analyze the feasibility of the proposed structure, this paper mathematically analyzes the operation modes of the converter with the proposed single soft-switching cell structure and presents guidelines for design and considerations. In addition, the feasibility of the 210[kW] HDC was confirmed through PSIM simulation, and the system volume reduction of up to 10.48% was confirmed as a result of the 5[kW] HDC test-bed experiment considering the fuel cell system. Through this, the validity of the proposed structure was verified.

Interactive Technology: Soft Engineering

  • Yoon, Joong-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2682-2686
    • /
    • 2003
  • Recent paradigm in technology shifts from object-based technology to environment-based technology. Issue here is interaction among human, machines, and environment. This requires new interpretations for the space among them. Holistic interactions based on “Mom (embodiment)” suggest a good starting point for this endeavor. The past, present, future of technology are presented in terms of technology’s fundamental virtue: “humanizing technology” or “technology serving human.” Interactive technology initiative (ITI) is an interdisciplinary research group to search for the proper technology and the proper way of implementing technology: “interactive technology” or “soft engineering.” Some experimental activities conducted by ITI are presented in this organized session, “Interactive Technology.” Metatechnology, soft engineering, “Mom (embodiment),” holistic interactions, tangible space, and ubiquitous computing are key concepts in interactive technology.

  • PDF

Space Vector Modulated Three-Phase Soft-Switching Active Rectifier and Its Performance Evaluations

  • Fujii Yuma;Ahmed Tarek;Imamura Kosuke;Hiraki Eiji;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.213-215
    • /
    • 2003
  • This paper presents an instantaneous space vector modulated voltage source type three-phase soft-switching PFC rectifier using a single auxiliary resonant DC Link snubber for alternative energy utilizations. in the first place, the operating principle of an active auxiliary resonant DC link snubber circuit is described including its unique features. In the next place, the simulation analysis of three-phase soft-switching PWM rectifier is implemented, and the operating performances or the three-phase voltage-fed PWM rectifier treated here, which can operate under the conditions of sinewave line current shaping and utility power factor are evaluated and discussed on tile basis of this simulation results.

  • PDF

Parallel Resonant Soft Switching Inverter based on Delta-Modulation Method (Delta-Modulation 기법을 적용한 병렬 공진형 소프트 스위칭 인버터)

  • Choi, Kwang-Soo;Kim, Young-Ho;Kim, Jun-Gu;Won, Chung-Yuen;Jung, Yong-Chae;Oh, Dong-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.212-214
    • /
    • 2009
  • In this paper, we have proposed a Parallel Resonant Soft Switching Inverter based on Delta-Modulation Method. The conventional full-bridge inverter generates switching losses due to the hard switching. The proposed inverter operates soft switching using a DC-link switch and resonant circuit. So, all of the switches in the proposed inverter operates soft switching. Therefore the proposed inverter can reduce not only switching loss but also capacity and size of passive devices due to the resonant elements. The validity of the proposed inverter is verified thorough the theoretical analysis and simulation.

  • PDF

A Novel Switched Capacitor Lossless Inductors Quasi-Resonant Snubber Assisted ZCS PWM High Frequency Series Load Resonant Inverter

  • Fathy, Khairy;Kang, Tae-Kyung;Kwon, Soon-Kurl;Suh, Ki-Young;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.169-171
    • /
    • 2005
  • In this paper, a novel type of auxiliary switched capacitor assisted edge resonant soft switching PWM series load resonant high frequency inverter with two auxiliary edge resonant lossless inductor snubbers is proposed for small consumer induction heating appliances. The operation principle of this high frequency inverter is described using the switching mode equivalent circuits. The practical effectiveness of the newly proposed soft switching inverter are discussed as compared with the conventional soft switching high frequency inverters based on simulation and experimental results from an application point of view.

  • PDF

An analytical Study on the Influence length of SCP Method (측방이동 대책공법(SCP)의 영향범위 산정에 관한 해석적 연구)

  • Lee, Young-Keun;Park, Chun-Sik;Kim, Jong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.152-160
    • /
    • 2010
  • In this study, cohesion of soft ground, soft ground depth and embankment height varying conditions, such as the impact of each condition after the calculation of the range, SCP was performed to evaluate the applicability of the method. Reinforcing effects of scope, and permit lateral movement of SCP 2D and 3D analysis of the program were calculated by the displacement ratio, the result follows. The height and depth of soft soil embankment with increasing and decreasing the cohesion tends to be affected were long range, SCP method applied by the finite element analysis Cu = 1.0tf/$m^2$, embankment height is 3.0m depth of soft soil can be applied in a less than 5.0m, and Cu = 3.0tf/$m^2$, embankment height, the soft soil depth is 3.0m 12.0m, Cu = 3.0tf/$m^2$, embankment height is 5.0m less than 7.0m depth of soft soil can be applied in was. And Cu = 5.0tf/$m^2$, embankment height is 3.0m below 15.0m depth rouge anti Floor, Cu = 3.0tf/$m^2$, embankment height of 5.0m 12.0m depth below the soft soil, Cu = 5.0tf/$m^2$, If the depth of soft soil embankment height of 7.0m and below 5.0m was applicable.

  • PDF