• Title/Summary/Keyword: Soft engineering

Search Result 3,334, Processing Time 0.027 seconds

Soft Error Susceptibility Analysis for Sequential Circuit Elements Based on EPPM

  • Cai, Shuo;Kuang, Ji-Shun;Liu, Tie-Qiao;Wang, Wei-Zheng
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.168-176
    • /
    • 2015
  • Due to the reduction in device feature size, transient faults (soft errors) in logic circuits induced by radiations increase dramatically. Many researches have been done in modeling and analyzing the susceptibility of sequential circuit elements caused by soft errors. However, to the best knowledge of the authors, there is no work which has well considerated the feedback characteristics and the multiple clock cycles of sequential circuits. In this paper, we present a new method for evaluating the susceptibility of sequential circuit elements to soft errors. The proposed method uses four Error Propagation Probability Matrixs (EPPMs) to represent the error propagation probability of logic gates and flip-flops in current clock cycle. Based on the predefined matrix union operations, the susceptibility of circuit elements in multiple clock cycles can be evaluated. Experimental results on ISCAS'89 benchmark circuits show that our method is more accurate and efficient than previous methods.

Evaluation of performance of piled-raft foundations on soft clay: A case study

  • Khanmohammadi, Mohammadreza;Fakharian, Kazem
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2018
  • Applicability of constructing piled raft foundations on soft clay has been given attention in recent years. Lack of sufficient stiffness for soil and thus excessive settlements to allow higher contribution of piles is the major concern in this regard. This paper presents a numerical investigation of performance of piled-raft foundations on soft clay with focusing on a case study. A 3D FEM numerical model is developed using ABAQUS. The model was calibrated by comparing physical and numerical modeling results of other researchers. Then the possibility of using piled-raft system in construction of foundation for a water storage tank in Sarbandar, Iran is assessed. Soil strength parameters in the numerical model were calibrated using the instrumentation data of a heavily instrumented preloading project at the construction site. The results indicate that choosing the proper combination of length and spacing for piles can lead to acceptable differential and total settlements while a high percentage of total bearing capacity of piles can be mobilized, which is an efficient solution for the project. Overall, the construction of piled-rafts on soft clays is promising as long as the total settlement of the structure is not imposing restrictions such as the common 25 mm allowable settlement. But instead, if higher allowable settlements are adopted, for example in the case of rigid steel tanks, the method shall be applicable with considerable cost savings.

Optimizing Assembly Line Balancing Problems with Soft Constraints (소프트 제약을 포함하는 조립라인 밸런싱 문제 최적화)

  • Choi, Seong-Hoon;Lee, Geun-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.105-116
    • /
    • 2018
  • In this study, we consider the assembly line balancing (ALB) problem which is known as an very important decision dealing with the optimal design of assembly lines. We consider ALB problems with soft constraints which are expected to be fulfilled, however they are not necessarily to be satisfied always and they are difficult to be presented in exact quantitative forms. In previous studies, most researches have dealt with hard constraints which should be satisfied at all time in ALB problems. In this study, we modify the mixed integer programming model of the problem introduced in the existing study where the problem was first considered. Based on the modified model, we propose a new algorithm using the genetic algorithm (GA). In the algorithm, new features like, a mixed initial population selection method composed of the random selection method and the elite solutions of the simple ALB problem, a fitness evaluation method based on achievement ratio are applied. In addition, we select the genetic operators and parameters which are appropriate for the soft assignment constraints through the preliminary tests. From the results of the computational experiments, it is shown that the proposed algorithm generated the solutions with the high achievement ratio of the soft constraints.

New Resonant AC Link Snubber-Assisted Three-Phase Soft-Switching PWM Inverter and Its Comparative Characteristics Evaluations

  • Yoshida, Masanobu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.239-248
    • /
    • 2003
  • This paper presents a novel prototype of three-phase voltage source type zero voltage soft-switching inverter with the auxiliary resonant snubbers suitable for high-power applications with IGBT power module packages in order to reduce their switching power losses as well as electromagnetic conductive and radiative noises. A proposed single inductor-assisted resonant AC link snubber circuit topology as one of some auxiliary resonant commutation snubbers developed previously to achieve the zero voltage soft-switching (ZVS) for the three-phase voltage source type sinewave PWM inverter operating under the instantaneous space voltage vector modulation is originally demonstrated as compared with the other types of resonant AC link snubber circuit topologies. In addition to this, its operation principle and unique features are described in this paper. Furthermore, the practical basic operating performances of the new conceptual instantaneous space voltage vector modulation resonant AC link snubber-assisted three-phase voltage source type soft-switching PWM inverter using IGBT power module packages are evaluated and discussed on the basis of switching voltage and current waveforms, output line to line voltage quality, power loss analysis, actual power conversion efficiency and electromagnetic conductive and radiative noises from an experimental point of view, comparing with those of conventional three-phase voltage source hard-switching PWM inverter using IGBT power modules.

Comparative study on the behavior of lime-soil columns and other types of stone columns

  • Malekpoor, Mohammadreza;Poorebrahim, Gholamreza
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.133-148
    • /
    • 2014
  • An experimental study is carried out to evaluate the performance of Lime mortar-Well graded Soil (Lime-WS) columns for the improvement of soft soils. Tests are conducted on a column of 100 mm diameter and 600 mm length surrounded by soft soil in different area ratios. Experiments are performed either with the entire area loading to evaluate the load - settlement behavior of treated grounds and only a column area loading to find the limiting axial stress of the column. A series of tests are carried out in soaking condition to investigate the influence of moisture content on the load - settlement behavior of specimens. In order to compare the behavior of Lime-WS columns with Conventional Stone (CS) columns as well as Geogrid Encased Stone (GES) columns, the behavior of these columns have been also considered in the present study. Remarkable improvement in the behavior of soft soil is observed due to the installation of Lime-WS columns and the performance of these columns is significantly enhanced by increasing the area ratio. The results show that CS columns are not suitable as a soil improvement technique for extremely soft soils and should be enhanced by encasing the column or replaced by rigid stone columns.

Improvement in Electrical Characteristics of Solution-Processed In-Zn-O Thin-Film Transistors Using a Soft Baking Process (Soft-Baking 처리를 통한 용액 공정형 In-Zn-O 박막 트랜지스터의 전기적 특성 향상)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.566-571
    • /
    • 2017
  • A soft baking process was used to enhance the electrical characteristics of solution-processed indium-zincoxide (IZO) thin-film transistors (TFTs). We demonstrate a stable soft baking process using a hot plate in air to maintain the electrical stability and improve the electrical performance of IZO TFTs. These oxide transistors exhibited good electrical performance; a field-effect mobility of $7.9cm^2/Vs$, threshold voltage of 1.4 V, sub-threshold slope of 0.5 V/dec, and a current on/off ratio of $2.9{\times}10^7$ were measured. To investigate the static response of our solutionprocessed IZO TFTs, simple resistor load type inverters were fabricated by connecting a resistor (5 or $10M{\Omega}$). Our IZO TFTs, which were manufactured using the soft baking process at a baking temperature of $120^{\circ}C$, performed well at the operating voltage, and are therefore a good candidate for use in advanced logic circuits and transparent display backplanes.

Trends of Nafion-based IPMC Application and Development (Nafion 기반 IPMC 응용 및 개발 동향)

  • Ho, Donghae;Cho, Sooyoung;Choi, Yoon Young;Choi, Young Jin;Cho, Jeong Ho
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.16-26
    • /
    • 2020
  • Recently, polymer-metal composite (IPMC)-based ionic artificial muscle has been drawing a huge attention for its excellent soft actuator performance having outstanding soft actuator performance with efficient conversion of electrical energy to mechanical energy under low working voltage. In addition, light, flexible and soft nature of IPMC and high bending strain response enabled development of versatile sensor application in association with soft actuator. In this paper, current issues of IPMC were discussed including standardizing preparation steps, relaxation under DC bias, inhibiting solvent evaporation, and improving poor output force. Solutions for these drawbacks of IPMC have recently been suggested in recent studies. After following explanation of the IPMC working mechanism, we investigate the main factors that affect the operating performance of the IPMC. Then, we reviewed the optimized IPMC actuator fabrication conditions especially for the preparation process, additive selection for a thicker membrane, water content, solvent substitutes, encapsulation, etc. Lastly, we considered the pros and cons of IPMCs for sensor application in a theoretical and experimental point of view. The strategies discussed in this paper to overcome such deficiencies of IPMCs are highly expected to provide a scope for IPMC utilization in soft robotics application.

Prediction and Measurement of Behaviour of Soft Soil Deposits (연약지반에서 예측 거동과 계측 결과 분석)

  • Kim, Yun-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.351-362
    • /
    • 2007
  • Predicted behaviour of a soft clay deposit in design stage is sometimes different from in-situ settlement and pore pressure measured during and after construction. In this paper, characteristics of settlement and pore pressure occurred in soft soil deposits were investigated briefly in order to get a better understanding of time-dependent viscoplastic behaviour and prevent geotechnical problems resulted from long-term settlement, differential settlement, etc.

  • PDF

A Flyback Transformer linked Soft Switching PWM DC-DC Power Converter using Trapped Energy Recovery Passive Quasi-Resonant Snubbers with an Auxiliary Three-Winding Transformer

  • Ahmed Tarek;Chandhaket Srawouth;Nakaoka Mutsuo;Jung Song Hwa;Lee Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.237-245
    • /
    • 2004
  • In this paper, a two-switch high frequency flyback transformer linked zero voltage soft switching PWM DC-DC power converter implemented for distributed DC- feeding power conditioning supplies is proposed and discussed. This switch mode power converter circuit is mainly based on two main active power semiconductor switches and a main flyback high frequency transformer linked DC-DC converter in which, two passive lossless quasi-resonant snubbers with pulse current regeneration loops for energy recovery to the DC supply voltages composed of a three winding auxiliary high frequency pulse transformer, auxiliary capacitors and auxiliary diodes for inductive energy recovery discharge blocking due to snubber capacitors are introduced to achieve zero voltage soft switching from light to full load conditions. It is clarified that the passive resonant snubber-assisted soft switching PWM DC-DC power converter has some advantages such as simple circuit configuration, low cost, simple control scheme, high efficiency and lowered noises due to the soft switching commutation. Its operating principle is also described using each mode equivalent circuit. To determine the optimum resonant snubber circuit parameters, some practical design considerations are discussed and evaluated in this paper. Moreover, through experimentation the practical effectiveness of the proposed soft switching PWM DC-DC power converter using IGBTs is evaluated and compared with a hard switching PWM DC-DC power converter.

DCGAN-based Compensation for Soft Errors in Face Recognition systems based on a Cross-layer Approach (얼굴인식 시스템의 소프트에러에 대한 DCGSN 기반의 크로스 레이어 보상 방법)

  • Cho, Young-Hwan;Kim, Do-Yun;Lee, Seung-Hyeon;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.430-437
    • /
    • 2021
  • In this paper, we propose a robust face recognition method against soft errors with a deep convolutional generative adversarial network(DCGAN) based compensation method by a cross-layer approach. When soft-errors occur in block data of JPEG files, these blocks can be decoded inappropriately. In previous results, these blocks have been replaced using a mean face, thereby improving recognition ratio to a certain degree. This paper uses a DCGAN-based compensation approach to extend the previous results. When soft errors are detected in an embedded system layer using parity bit checkers, they are compensated in the application layer using compensated block data by a DCGAN-based compensation method. Regarding soft errors and block data loss in facial images, a DCGAN architecture is redesigned to compensate for the block data loss. Simulation results show that the proposed method effectively compensates for performance degradation due to soft errors.