• Title/Summary/Keyword: Soft Soil

Search Result 1,145, Processing Time 0.024 seconds

Development of early strength type hardening Agent for Surface Soil Stabilization Method (연약지반 표층혼합처리를 위한 조기강도 발현형 고화재의 개발)

  • Ki, Tae-Kyoung;Kim, Ki-Hoon;Lee, Byung-Ki;Kwon, O-Bong;Kim, Kyoung-Min;Park, Sang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.80-81
    • /
    • 2013
  • There is the increasing number of constructing soil or structure on the soft ground during public works. Usually cement or slag cement has been the traditional material for surface soil stabilization method. Recently, early strength development properties of hardening agent is required for driving abilities of execution equipment and shortening of the construction time. Therefore, the purpose of this study is to develop the early compressive strength hardening agent for surface soil stabilization. The study was confirmed performance and availability of hardening agent using early strength type cement and industrial by-product minerals through early strength development properties in accordance with water cement ratio, content of hardening agent for soft soil.

  • PDF

Cause of Rall Road Slope Failure and Determination of Soil Strength for Remedy (철도사면파괴 원인 및 대책공법 적용을 위한 강도정수 결정)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.3 s.14
    • /
    • pp.25-31
    • /
    • 2004
  • Rail road slope can be fatted because of existence of unexpected soft subsoil. Purpose of this study is verifying the cause of rail road slope failure and determination of soil strength for remedy. Drilling some boreholes, cone penetration test and field vane test were executed in order to find out the cause of slope failure. In addition, laboratory test was conducted in order to determine soil strength of soft soil sampled as undisturbed state. As a result of both the in-situ and the laboratory tests, the cause of slope failure is thought to be propagation of failure zone by progressive rupture of overconsolidated clay Soft soil strength was determined through back analysis of the failed slope.

Multibody Dynamic Analysis of a Test Miner on Soft Cohesive Soil (연약지반 시험집광기의 다물체 동력학 해석)

  • KIM HYUNG-WOO;HONG SUP;CHOI JONG-SU;YEU TAE-KYEONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.277-282
    • /
    • 2004
  • This paper concerns about dynamic analysis of an underwater test miner, which operates on cohesive soil. The test miner consists of tracked vehicle and pick-up. device. The motion oj pick-up device relative to the vehicle chassis is controlled by two pairs of hydraulic cylinders. The test miner is modeled by means of a commercial software. A terramechanics model of cohesive soft soil is implemented to the software and applied to dynamic analysis of the test miner model. The dynamic responses of test miner are studied with respect to of four different types of terrain conditions.

  • PDF

Soil Property of Coastal Soft Ground Considering Geological Property (지질학적 특성을 고려한 해안연약지반의 토질특성)

  • 송무영;김팔규;김연천;류권일
    • The Journal of Engineering Geology
    • /
    • v.7 no.3
    • /
    • pp.217-227
    • /
    • 1997
  • The purpose of this study is to analyze the correlation of soil properties in coastal soft ground. For the purpose of this study, several coastal soft ground areas were selected. Many large scale construction works are being executed and will increase continuously in these soft ground areas. So, soil property in these areas is very important. The grounds forming coastal areas are affected by seawater movement. So, most of these areas consist of alluvium stratum. Therefore, soil properties of eastern and southern coastal areas are very complex. Many laboratory tests were executed with disturbed and undisturbed soil samples. Undisturbed samples were taken by using thin walled tubes and transported into the laboratory with caution, so as not to disturb the sample. The consistent rate of fine-grained content in these areas is over 90%. Also, these areas contain higher water content and clay content. Therefore, knowing these soil properties, it is possible to safely design fabrics and constructions.

  • PDF

Numerical Analysis on the Effect of Increasing Stiffness of Geosynthetics on Soil Displacement and Pile Efficiency in Piled Embankment on Soft Soil (성토지지말뚝구조에서 토목섬유 인장강성 증가에 따른 변위 억제 및 말뚝효율 증가량에 대한 수치해석적 분석)

  • Lee, Taehee;Lee, Su-Hyung;Lee, Il-Wha;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.31-43
    • /
    • 2015
  • A numerical analysis on the effect of increasing tensile stiffness of the geosynthetics on the soil displacement and pile efficiency was conducted. Parametric studies by changing the stiffness of soft soil, internal friction and dilatancy angles of the embankment material, and flexual stiffness of the composite layer including the geosynthetics were carried out. In general, increasing stiffness of the geosynthetics improves the pile efficiency, whereas the amount of its improvement depends on the condition of parameters. In case of the sufficiently low stiffness of the soft soil or high flexual stiffness of the composite layer including the geosynthetics, a noticeable increase in the pile efficiency can be observed. When the stiffness of the soft soil is very low, the increase in the stiffness of the geosynthetics can significantly reduce the vertical displacement in the piled embankment. When the flexual stiffness of the composite layer is sufficiently high, increasing stiffness of the geosynthetics can greatly improve the pile efficiency.

The Application of Converts Slag for Vertical Drains (제강슬레그의 연직배수재로서의 활용에 관한 연구)

  • 김용수;정승용;한기현;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.623-630
    • /
    • 2000
  • In this study, it was to investigate the possibility to use the converts slag, by product in producing steel as a substitute material with sand that is used fur a civil construction materials, in developing techniques to use converts slag to improve soft clay ground. To do this, it was investigated the physical and mechanical properties of the converts slag as a civil construction material. For this, cylindrical cell consolidation with a single vertical drains and large scale soil box test were performed. Through large scale soil box test, the applicability of the converts slag to the present vertical drain techniques which is dependent on sand and plastic drains was studied. As a result of that, it was found that the shape of inserted drains was maintained after completing a consolidation process of a soft clay with slag drains. In addition, we could find that the slag drains showed the similar results with sand drains in soft clay by analyzing the effect of acceleration of consolidation.

  • PDF

Prediction of Settlement for the Highly Plastic and Silty Soft Ground Contained of the Organic Deposits (유기질층을 포함한 고소성 실트질 연약지반의 침하 예측)

  • Yoo, Nam-Jae;Kim, Kyum;Yoo, Chang-Sun
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.91-98
    • /
    • 2011
  • In this thesis, from the results of settlement measurement performed at the site where embankment earthwork was carried out on the ground consisting of highly plastic and silty soft soils interlayered with organic deposits, various methods of predicting the embankment settlement such as Hoshino's method, Asaoka's method, hyperbolic method, ${\sqrt{s}}$ method and Monden's method were used to investigate their applicability and the inverse method of finding the soil parameter related to consolidation was used to predict the consolidation behavior in the future. It was confirmed that reliable prediction of consolidation behavior under various conditions could be done to estimate soil parameter related to consolidation such as the consolidation index and consolidation coefficient by the inverse method of comparing the measured settlement with the predicted value by the settlement prediction methods.

  • PDF

Dynamic Analysis of Underwater Tracked Vehicle on Extremely Soft Soil by Using Euler Parameters (오일러 매개변수를 이용한 해저연약지반 무한궤도 차량의 동적거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.93-100
    • /
    • 2006
  • This paper is concerned with the dynamic analysis of an underwater tracked vehicle, operating on extremely soft soil of the deep-seafloor. The vehicle is assumed as a rigid-body with 6-dof. The orientation of the vehicle is defined by four Euler parameters. To solve the motion equations of the vehicle, the Newmark numerical integrator is used in the incremental-iterative algorithm. The normalization constraint of Euler parameters is satisfied by using of a sequential updating method. The hydrodynamic force and moment are included in the tracked vehicle's dynamics. The hydrodynamic effects on the performance of tracked vehicles are investigated through numerical simulations.

Critical Speed Analysis of Geogrid-Reinforced Rail Roadbed (지오그리드로 보강된 철도노반의 한계속도에 관한 연구)

  • 신은철;이규진;오영인
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.534-539
    • /
    • 2001
  • This paper presents the critical speed analysis of geogrid-reinforced rail roadbeds on soft soil. A rail roadbed on soft ground must be designed to avoid intolerable stress in the underlying soil and to give sufficient support for the rail system. At high speeds, the deformation of rail systems will gain dynamic amplification, and reach excessive values as a certain speed, here termed critical speed is approached. The elastic Winkler foundation model was used to predict the critical speed of geogrid-reinforced rail roadbeds on soft soil and the model properties were determined by the in-situ cyclic plate load test. Based on the parametric study of elastic beam on Winkler foundation model, the critical speed increase with the increase of the flexural risidity of subgrade EI and the stiffness coefficient of Winkler foundation k. From the in-situ cyclic load tests and analysis of elastic beam on Winkler foundation model, the critical speed increase with increase in number of reinforced layer and non-dimensional value for depth of first geogrid layers and the thickness of reinforced rail roadbed u/d.

  • PDF

A Method for 3-D Dynamic Analysis of Tracked Vehicles on Soft Terrain of Seafloor (해저 연약 지반 주행차량의 3차원 동력학 해석 기법)

  • Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.149-154
    • /
    • 2002
  • A simplified 3D dynamic model of tracked vehicle crawling on cohesive soft soil is investigated. The vehicle is assumed as rigid body with 6-dof. Cohesive soft soil is modeled through relations: pressure to sinkage, shear displacement to shear stress, and shear to dynamic sinkage. Equations of motion of vehicle are derived with respect to the body-fixed coordinates. In order to investigate 3D transient dynamics of tracked vehicle, Newmark's method is employed based on incremental-iterative algorithm. 3D dynamic simulations are conducted for a tracked vehicle model and steering performance is investigated.

  • PDF