• Title/Summary/Keyword: Soft Robotics

Search Result 139, Processing Time 0.089 seconds

Evaluation of realtime communication over TCP/IP network for industrial automation (공장 자동화를 위한 TCP/IP 네트웍에서의 실시간 통신에 관한 연구)

  • 윤영찬;박재현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1032-1035
    • /
    • 1996
  • While Ethernet and TCP/IP are the most widely used protocol, for Real-time system, it is not applicable because it doesn't guarantee the deterministic transmission time. Furthermore, the TCP acknowledgement scheme and sliding window algorithm enforce to collide packets. Although various Collision-Free CSMA protocol was presented, it is very difficult to implement in well known OS(UNIX, WilidowsNT) because we have to modify network kernel. This paper presents another transmission protocol based on modified UDP. The colliding probability can be minimized by avoiding successive packet transmission and decreasing competition duration. The proposed algorithm can be used for the soft real-time industrial automation network.

  • PDF

Walking of a biped robot with compliant ankle joints (순응성 발목 관절을 갖는 두발 로보트의 보행)

  • 이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1157-1160
    • /
    • 1996
  • Control of a biped robot which has compliant ankle joints is dealt in this paper. Simulated version of a human ankle joint is built using springs and mechanical constraints, which gives a flexibility of joint and compliance against the touching ground. The biped robot with compliant ankle joints proposed here gives a good contact between its sole and the ground and makes foot landing soft. As a result, installing force sensors for measuring the center of gravity of the biped becomes easier. A motor to drive an ankle joint is not needed which makes legs light. However, the control problem becomes more difficult because the torque of the ankle joint to put the biped in a desired walking gait cannot be provided from the compliant ankle joint. To solve this problem, we proposed a dynamic gait modification method by adjusting the position of a hip joint. Simulation results for the mathematical model of the SD-2 biped in the Ohio State University are given to show the validity of the proposed controller.

  • PDF

High-Frequency Dimmable Electronic Ballast for Automotive HID Lamps

  • Chiu, Huang-Jen;Huang, Hsiu-Ming;Lin, Li-Wei;Mou, Shann-Chyi;Liu, Pang-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1361-1365
    • /
    • 2005
  • This paper presents a high-frequency electronic ballast for HID lamps. A new fixed frequency dimming method with low EMI features is developed in this research. The proposed electronic ballast has the advantages of high power density, simple circuit and low EMI features. The circuit operating principle and design procedures are described in detail. A laboratory prototype was built and tested. The simulation and experimental waveforms verify the feasibility of the proposed scheme.

  • PDF

4D printing with smart materials and structures (스마트 소재 및 구조 기반 4D 프린팅 기술 동향)

  • Song, Hyeonseo;Kim, Jiyun
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.27-37
    • /
    • 2020
  • Recently, 4D printing technology has received considerable attention in various industries and research fields including soft robotics, tissue engineering, electronics. In 4D printing process, 3D printed object transforms itself into programmed structure by the input of external energy. Thus, this process requires not only smart materials, capable of changing their properties or features in response to external stimuli such as electricity, temperature, light, etc., but also smart structures, multi-material 3D printing, simulation and so on. In this review, the concept, technical elements and potential of 4d printing are presented.

Optimal Guidance and Nonlinear Tracking Control for a Lunar Lander

  • Hwang, Myung-Shin;Kim, Jin-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.167.2-167
    • /
    • 2001
  • This paper presents guidance and control laws which guarantee a minimum fuel consumption and have obustness against various disturbances during a terminal-landing phase on the lunar surface. The nonlinear robust tracking control system is designed to track the reference profiles, which are expressed by exponential functions. An adjustment law in the tracking controller is given in the form of the differential equations with respect to the controller´s variable gains. Computer simulations are performed to examine the tracking accuracy, the robustness in a thrust failure mode, and the vertical soft landing at a pre-assigned point on the lunar surface. The results of numerical simulation show the effectiveness of the present control law.

  • PDF

A Study on Stable Grasping Control of Dual-Fingers with Soft-Tips

  • Sim, Jae-Goon;Yang, Soon-Yong;Han, Hyun-Yong;Lee, Byung-Ryon;Ahn, kyung-Kwan;Kim, Sung-Su;Park, Kyung-Taek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.108.4-108
    • /
    • 2002
  • This paper aims to derive a mathematical model of the dynamics of handling tasks in robot fingers which stably grasps and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. Secondly, problems of controlling both the internal force and the rotation angle of the grasped object under the constraints of tight area-contacts are discussed. The effect of geometric constraints of area-contacts on motion of the overall system is analyzed and a method of computer simulation for differential-algebraic equations of overall...

  • PDF

Seven axis modular type pneumatic manipulator development (7축 모듈라형 공기압 매니퓰레이터 개발)

  • 김동수;김용채;김형의
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.968-973
    • /
    • 1991
  • Seven axis modular type pneumatic manipulator is composed of electro-pneumatic automation system which contributes to factory automation by performing loading & unloading process successively which is simple routine work of dealing item of machine tool, catapult, assembly machine, welding machine and so on. In this study, we obtained soft and quick movement in a large space and good reliability motion of various function by combining several actuators which perform rotation movement as well as linear movement at the same time. Gripper which apply to rotary sensor transmitted a structure to demanded position. This development item of 5kgf load prevent stick-slip phenomena of stroke end by designing high cushion internal. We develope flexible manipulator which conforms to demand of user by applying multiple sequence program.

  • PDF

Design of controllers for Angle control of Aerodynamic Plant using SEVA (SEVA를 이용한 Aerodynamic Plant의 각도 제어를 위한 제어기의 설계)

  • 나승유;배희종;기효종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.49-49
    • /
    • 2000
  • Sensors are used to measure the states in need for control in a closed-loop system. Accuracy, reliability, stability of sensors are closely related to the controller performance. In case of sensor faults, they are detected by examining the sensor output values and the major values of the system. And then the types of the faults are recognized by the analysis of symptoms of faults. In this paper, a self-validating sensor is applied to the control of an aerodynamic plant system with the sensor fault problems in the potentiometer module for exact positioning to show the applicability. We propose a digital controller can provide a satisfactory loop performance even when the sensor faults occur.

  • PDF

Nanoparticle based Wearable Sensor (나노입자 기반의 웨어러블 센서)

  • Woo, Ho Kun;Ahn, Junhyuk;Oh, Soong ju
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.4-16
    • /
    • 2019
  • Recently, wearable sensors have received considerable attention in a variety of research fields and industries as the importance of wearable healthcare systems, soft robotics and bio-integrated devices increased. However, expensive and complex processes are hindering the commercialization of wearable sensors. Nanoparticle presents some of solutions to these problems as its adjustable for processability and tunable properties. In this paper, the recent development of nanoparticle based pressure and strain sensors was reviewed, and a discussion on their strategies to overcome the conventional limitation and operating principles is presented.

Technical Trends of Metal Nanowire-Based Electrode (금속 나노와이어 기반 전극 기술 개발 동향)

  • Shin, Yoo Bin;Ju, Yun Hee;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.15-22
    • /
    • 2019
  • Metallic nanowires (MNWs) have recently been considered as one of the most promising candidates for flexible electrodes of advanced electronics including wearable devices, electronic skins, and soft robotics, since they have high aspect ratio in physical shape, low percolation threshold, high ductility and optical transparency. Herein, we review the latest findings related to the MNWs and discuss the properties and potentials of this material that can be used in implementation of various advanced electronic devices.