• Title/Summary/Keyword: Soft Laser

Search Result 139, Processing Time 0.033 seconds

Microgrooves on titanium surface affect peri-implant cell adhesion and soft tissue sealing; an in vitro and in vivo study

  • Lee, Hyo-Jung;Lee, Jaden;Lee, Jung-Tae;Hong, Ji-Soo;Lim, Bum-Soon;Park, Hee-Jung;Kim, Young-Kwang;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.3
    • /
    • pp.120-126
    • /
    • 2015
  • Purpose: With the significance of stable adhesion of alveolar bone and peri-implant soft tissue on the surface of titanium for successful dental implantation procedure, the purpose of this study was to apply microgrooves on the titanium surface and investigate their effects on peri-implant cells and tissues. Methods: Three types of commercially pure titanium discs were prepared; machined-surface discs (A), sandblasted, large-grit, acid-etched (SLA)-treated discs (B), SLA and microgroove-formed discs (C). After surface topography of the discs was examined by confocal laser scanning electron microscopy, water contact angle and surface energy were measured. Human gingival fibroblasts (hGFs) and murine osteoblastic cells (MC3T3-E1) were seeded onto the titanium discs for immunofluorescence assay of adhesion proteins. Commercially pure titanium implants with microgrooves on the coronal microthreads design were inserted into the edentulous mandible of beagle dogs. After 2 weeks and 6 weeks of implant insertion, the animal subjects were euthanized to confirm peri-implant tissue healing pattern in histologic specimens. Results: Group C presented the lowest water contact angle ($62.89{\pm}5.66{\theta}$), highest surface energy ($45{\pm}1.2mN/m$), and highest surface roughness ($Ra=22.351{\pm}2.766{\mu}m$). The expression of adhesion molecules of hGFs and MC3T30E1 cells was prominent in group C. Titanium implants with microgrooves on the coronal portion showed firm adhesion to peri-implant soft tissue. Conclusions: Microgrooves on the titanium surface promoted the adhesion of gingival fibroblasts and osteoblastic cells, as well as favorable peri-implant soft tissue sealing.

A study on the fabrication of heatable glass using conductive metal thin film on Low-e glass (로이유리의 전도성 금속박막을 이용한 발열유리 제작에 관한 연구)

  • Oh, Chaegon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.105-112
    • /
    • 2018
  • This paper proposes a method for fabricating heatable glass using the conduction characteristics of metal thin films deposited on the surface of Low-e(Low emissivity) glass. The heating value of Low-e glass depends on the Joule heat caused by Low-e glass sheet resistance. Hence, its prediction and design are possible by measuring the sheet resistance of the material. In this study, silver electrodes were placed at 50 mm intervals on a soft Low-e glass sample with a low emissivity layer of 11 nm. This study measured the sheet resistance using a 4-point probe, predicted the power consumption and heating value of the Low-e glass, and confirmed the heating performance through fabrication and experience. There are two conventional methods for manufacturing heatable glass. One is a method of inserting nichrome heating wire into normal glass, and the other is a method of depositing a conductive transparent thin film on normal glass. The method of inserting nichrome heating wire is excellent in terms of the heating performance, but it damages the transparency of the glass. The method for depositing a conductive transparent thin film is good in terms of transparency, but its practicality is low because of its complicated process. This paper proposes a method for manufacturing heatable glass with the desired heating performance using Low-e glass, which is used mainly to improve the insulation performance of a building. That is by emitting a laser beam to the conductive metal film coated on the entire surface of the Low-e glass. The proposed method is superior in terms of transparency to the conventional method of inserting nichrome heating wire, and the manufacturing process is simpler than the method of depositing a conductive transparent thin film. In addition, the heat characteristics were compared according to the patterning of the surface thin film of the Low-e glass by an emitting laser and the laser output conditions suitable for Low-e glass.

Micro-imaging techniques for evaluation of plastic microfluidic chip

  • Kim, Jung-Kyung;Hyunwoo Bang;Lee, Yongku;Chanil Chung;Yoo, Jung-Yul;Yang, Sang-Sik;Kim, Jin-Seung;Park, Sekwang;Chang, Jun-Keun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.239-247
    • /
    • 2001
  • The Fluorescence-Activated Cell Sorter (FACS) is a well-established instrument used for identifying, enumerating, classifying and sorting cells by their physical and optical characteristics. For a miniaturized FACS device, a disposable plastic microchip has been developed which has a hydrodynamic focusing chamber using soft lithography. As the characteristics of the spatially confined sample stream have an effect on sample throughput, detection efficiency, and the accuracy of cell sorting, systematic fluid dynamic studies are required. Flow visualization is conducted with a laser scanning confocal microscopy (LSCM), and three-dimensional flow structure of the focused sample stream is reconstructed from 2D slices acquired at $1\mutextrm{m}$ intervals in depth. It was observed that the flow structure in the focusing chamber is skewed by unsymmetrical velocity profile arising from trapezoidal cross section of the microchannel. For a quantitative analysis of a microscopic flow structure, Confocal Micro-PIV system has been developed to evaluate the accelerated flow field in the focusing chamber. This study proposes a method which defines the depth of the measurement volume using a detection pinhole. The trajectories of red blood cells (RBCs) and their interactions with surrounding flow field in the squeezed sample stream are evaluated to find optimal shape of the focusing chamber and fluid manipulation scheme for stable cell transporting, efficient detection, and sorting

  • PDF

A Study on the Quality of Photometric Scanning Under Variable Illumination Conditions

  • Jeon, Hyoungjoon;Hafeez, Jahanzeb;Hamacher, Alaric;Lee, Seunghyun;Kwon, Soonchul
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.88-95
    • /
    • 2017
  • The conventional scan methods are based on a laser scanner and a depth camera, which requires high cost and complicated post-processing. Whereas in photometric scanning method, the 3D modeling data is acquired through multi-view images. This is advantageous compared to the other methods. The quality of a photometric 3D model depends on the environmental conditions or the object characteristics, but the quality is lower as compared to other methods. Therefore, various methods for improving the quality of photometric scanning are being studied. In this paper, we aim to investigate the effect of illumination conditions on the quality of photometric scanning data. To do this, 'Moai' statue is 3D printed with a size of $600(H){\times}1,000(V){\times}600(D)$. The printed object is photographed under the hard light and soft light environments. We obtained the modeling data by photometric scanning method and compared it with the ground truth of 'Moai'. The 'Point-to-Point' method used to analyseanalyze the modeling data using open source tool 'CloudCompare'. As a result of comparison, it is confirmed that the standard deviation value of the 3D model generated under the soft light is 0.090686 and the standard deviation value of the 3D model generated under the hard light is 0.039954. This proves that the higher quality 3D modeling data can be obtained in a hard light environment. The results of this paper are expected to be applied for the acquisition of high-quality data.

EMG Pattern Classification using Soft Computing Techniques and Its Application to the Control of a Rehabilitation Robotic Arm (소프트 컴퓨팅 기법을 이용한 근전도 신호의 패턴 분류와 재활 로봇 팔 제어에의 응용)

  • Han, Jeong-Su;Kim, Jong-Seong;Song, Won-Gyeong;Bang, Won-Cheol;Lee, Hui-Yeong;Byeon, Jeung-Nam
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.50-63
    • /
    • 2000
  • In this paper, a new EMG pattern classification method based on soft computing techniques is proposed to help the disabled and the elderly handle rehabilitation robotic arm systems. First, it is shown that EMG is more useful than existing input devices such as voice, a laser pointer and a keypad in view of naturality, extensibility, and applicability. Then, a new procedure is proposed to select the minimal feature set. As methods of classifying the pre-defined motions, a fuzzy pattern classification and fuzzy min-max neural networks (FMMNN) are designed using the selected features. As results, the motions are recognized with success rates of 83 percent and 90 Percent using fuzzy pattern classification and FMMNN, respectively.

  • PDF

Two-dimensional deformation measurement in the centrifuge model test using particle image velocimetry

  • Li, J.C.;Zhu, B.;Ye, X.W.;Liu, T.W.;Chen, Y.M.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.793-802
    • /
    • 2019
  • The centrifuge model test is usually used for two-dimensional deformation and instability study of the soil slopes. As a typical loose slope, the municipal solid waste (MSW) landfill is easy to slide with large deformation, under high water levels or large earthquakes. A series of centrifuge model tests of landfill slide induced by rising water level and earthquake were carried out. The particle image velocimetry (PIV), laser displacement transducer (LDT) and marker tracer (MT) methods were used to measure the deformation of the landfill under different centrifugal accelerations, water levels and earthquake magnitudes. The PIV method realized the observation of continuous deformation of the landfill model, and its results were consistent with those by LDT, which had higher precision than the MT method. The deformation of the landfill was mainly vertically downward and increased linearly with the rising centrifugal acceleration. When the water level rose, the horizontal deformation of the landfill developed gradually due to the seepage, and a global slide surface formed when the critical water level was reached. The seismic deformation of the landfill was mainly vertical at a low water level, but significant horizontal deformation occurred under a high water level. The results of the tests and analyses verified the applicability of PIV in the two-dimensional deformation measurement in the centrifuge model tests of the MSW landfill, and provide an important basis for revealing the instability mechanism of landfills under extreme hydraulic and seismic conditions.

A MECHANICAL INVESTIGATION OF CORNEAL REFRACTIVE SURGERIES AND PROPOSITION OF NEW TECHNIQUES (각막굴절수술의 역학적 고찰 및 새로운 기법의 시도)

  • Shin, J.W.;Han, G.J.;Whang, M.C.;Nam, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.95-100
    • /
    • 1995
  • This study investigated the effects of mechanical factors involved in several corneal refractive surgeries on the surgical outcomes. Then we proposed possible new techniques from the mechanical point of a view utilizing finite element method. The models studied are: circumferential keratetomy, combination of excimer laser photorefractive keratectomy and circumferential keratotomy for myopia treatment, arcuate keratotomy for astigmatism treatment. The cornea was assumed to be nonlinear elastic and almost incompressible material as the most soft tissue in the human body. In the circumferential keratotomy the effect of the incision location was investigated. The angle and location of the incision were varied to predict the surgical outcomes in the arcuate keratotomy. The finite element analysis results showed that the location of incision was a critical factor affecting the surgical outcomes in the circumferential keratotomy. In the combination of the excimer laser photorefractive keratectomy and circumferential keratotomy, it was predicted that the circumferential can increase or decrease the refractive power depending on the incision location or it can be used to adjust the overcorrection of undercorrection. In the arcuate keratotomy for astigmatism, the most diopter changes were predicted when the location and the angle of the incision were 3.0mm from the apex and $90^{\circ}$, respectively. In the arcuate keratotomy, the effects of an incision were studied within the incision area as well as outside the incision area. Also, the arcuate keratotomy with two incisions located on the opposite area of the cornea was also studied. As a conclusion, the finite element method is a useful technique in the area of corneal refractive surgeries to develop new techinques.

  • PDF

APPLICATION OF TIME-OF-FLIGHT NEAR INFRARED SPECTROSCOPY TO WOOD

  • Tsuchikawa, Satoru;Tsutsumi, Shigeaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1182-1182
    • /
    • 2001
  • In this study, the newly constructed optical measurement system, which was mainly composed of a parametric tunable laser and a near infrared photoelectric multiplier, was introduced to clarify the optical characteristics of wood as discontinuous body with anisotropic cellular structure from the viewpoint of the time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects of the cellular structure of wood sample, the wavelength of the laser beam λ, and the detection position of transmitted light on the time resolved profiles were investigated in detail. The variation of the attenuance of peak maxima At, the time delay of peak maxima Δt and the variation of full width at half maximum Δw were strongly dependent on the feature of cellular structure of a sample and the wavelength of the laser beam. The substantial optical path length became about 30 to 35 times as long as sample thickness except the absorption band of water. Δt ${\times}$ Δw representing the light scattering condition increased exponentially with the sample thickness or the distance between the irradiation point and the end of sample. Around the λ=900-950 nm, there may be considerable light scattering in the lumen of tracheid, which is multiple specular reflection and easy to propagate along the length of wood fiber. Such tendency was remarkable for soft wood with the aggregate of thin layers of cell walls. When we apply TOF-NIRS to the cellular structural materials like wood, it is very important to give attention to the difference in the light scattering within cell wall and the multiple specular-like reflections between cell walls. We tried to express the characteristics of the time resolved profile on the basis of the optical parameters for light propagation determined by the previous studies, which were absorption coefficient K and scattering coefficient S from Kubelka-Munk theory and n from nth power cosine model of radiant intensity. The wavelength dependency of the product of K/S and n, which expressed the light-absorbing and -scattering condition and the degree of anisotropy, respectively, was similar to that of the time delay of peak maxima Δt. The variation of the time resolved profile is governed by the combination of these parameters. So, we can easily find the set of parameters for light propagation synthetically from Δt.

  • PDF

Development of Rapid Tooling using Investment Casting & R/P Master Model (R/P 마스터 모델을 활용한 정밀주조 부품 및 쾌속금형 제작 공정기술의 개발)

  • Jeong, Hae-Do;Kim, Hwa-Young
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.330-335
    • /
    • 2000
  • Functional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported. But a system which can build directly 3D parts of high performance functional material as metal park would get long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we translated the wax patterns to numerous metal tool prototypes by new investment casting process combined conventional investment casting with rapid prototyping & rapid tooling process. With this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P pare to metal part.

  • PDF

Photo-induced chemical change of di-fluoride in the CYTOP doped graphene

  • Yang, Mi-Hyun;Manoj, Sharma;Ihm, Kyuwook;Ahn, Joung Real
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.115-115
    • /
    • 2015
  • Many efforts have been devoted on chemical modification of graphene layer to modulate its electrical properties. In the previous report, laser irradiation on the CYTOP (Amorphous Fluoropolymer) covered graphene layer induces chemical modification wherein carbon fluoride is formed on the graphene surface. This results in the insulating I-V characteristics, which have been attracting much research interests on it. However, the direct analytical evidence of the fluoride formation on graphene surface is not yet studied. In this work we investigated what happened on the CYTOP/graphene interface during photon irradiation using spatially resolved photoemission spectroscopy method. It is found that the soft x-ray (614 eV) induces desorption of fluoride atoms from the CYTOP and change di-fluoride form to mono-fluoride. As the photo-induced fluorine desorption is continue strong dipole field generated by initial di-fluoride forms is gradually decreased, resulting in the overall binding energy shift of the C 1s core levels. Both photo-modified CYTOP and CYTOP starts to desorb above $286^{\circ}C$ (~ 0.047 eV), which means that no strong chemical interaction between CYTOP and graphene is established.

  • PDF