• Title/Summary/Keyword: Soft Ground Improvement

Search Result 340, Processing Time 0.029 seconds

Geotechnical Considerations for Railway Design in the Middle East (중동지역 철도설계 시 지반공학적 고려사항)

  • Moon, Joon-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.49-60
    • /
    • 2013
  • The plan for major design-build projects of railway link among countries in gulf area (GCC) and freight rail construction is recently announced, but Korean companies have a hard time tendering due to special geotechnical condition in the Middle East. The major geotechnical risks during railway construction in the Middle East are related to ground improvement of soft Sabkha ground, wind-blown sand mitigation measure, dune sand compaction, and construction of large-scale cut and embankment. In this study, the characteristics of special geotechnical condition and potential geotechnical risks during railway construction in the Middle East are discussed on the basis of field observation, literature review, and field and laboratory test results.

Consolidation Behavior of SCP Improved Ground at Pusan New Port Part 1-1 (부산신항 1-1단계 SCP 개량지반 압밀 특성)

  • JUNG JONG-BUM;YANG SANG-YONG;BYUN JUN-GI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.51-56
    • /
    • 2004
  • The sand compaction pile (SCP) method, which forms a composite ground by driving sand piles into clay deposit, is the most commonly used soil improvement techniques in many countries for more than 30 years. Installation of sand compaction piles reduces the amount of consolidation settlement and increases the bearing capacity of soft clay deposit. In this paper, field survey conducted to investigated the consolidation behavior of the composite ground improved by SCPs. It is suggested that the measured consolidation velocity is later than design theory, however measured consolidation settlement is higher than design theory.

  • PDF

Characteristics of Unconfined Compressive Strength of Dredged Clay Mixed with Friendly Soil Hardening Agent (준설토와 친토양 경화재 혼합지반의 일축강도특성)

  • Oh, Sewook;Yeon, Yonghum;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.73-81
    • /
    • 2016
  • In the construction on low strength and high compressible soft ground, the many problems have been occurred in recent construction project. therefore, the soil improvement have been developed to obtain high strength in relatively short period of curing time. Based on the laboratory tests using undisturbed marine clay, the effect of improvement on soft ground was estimated. Deep mixing method by cement have been virtually used for decades to improve the mechanical properties of soft ground. However, previous researches set the focus on the short term strength the about 10% of cement treated clay. In this paper, cement and Natural Soil Stabilizer (NSS) were used as the stabilizing agent to obtain trafficability and mechanical strength of the soft clay. Based on the several laboratory tests, optimum condition was proposed to ensure the mechanical strength and compressibility as the foundation soil using cement and NSS mixed soil. Finally, research data was proposed about the applicability of NSS as the stabilizing agent to soft clay to increase the mechanical strength of soil.

Application of Soil-Cement Piles to the Ground Improvement of Harbor Structures (소일-시멘트 파일을 이용한 항만구조물의 말뚝식 지반개량 적용성)

  • Lee, Seong-Hun;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.29-47
    • /
    • 2013
  • This study undertook research on the sections of 90 harbor structures which applied a pile-type soil improvement using the soil-cement pile and then, determined the minimum replacement rate for each section, showing sufficient stability in all relevant studies including numerical analysis. The reliability of the numerical analysis was verified by a centrifuge model test. As a result of the study, it was revealed that when the foundation soil is too soft ($s_u$ = under 15 kPa), it is unsuitable to apply a pile-type ground improvement to a soil improvement regardless of types of super structures. And a pile-type soil improvement was found to be suitable for a harbor structure with the relative stiffness ratio (n) of less than 50~75 at a maximum and the 2~3 MPa strength of the soil-cement pile. Furthermore the governing factor for the minimum replacement rate for the pile-type soil improvement was turned out to be the allowable horizontal displacement. Therefore, the primary review to see the applicability of the pile-type soil improvement requires the evaluation of horizontal displacements.

Application of three-dimensional modified inclined braces to control soft-story buildings

  • Nodehi, Soroush;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.811-824
    • /
    • 2022
  • Despite its disadvantages, soft story can reduce the damage to the upper floors by concentrating drift in that specific story provided that large drifts are avoided. Gapped-Inclined Brace (GIB) with reduced P-delta effects and the control of soft story stiffness makes it possible to take advantage of the soft story in buildings and increase their capacity for energy dissipation. OpenSees software is used in this study to validate and modify the GIB model's shortcomings. Also, the analysis method for this element is changed for design. The modified element is evaluated in 3D analysis. Finally, to retrofit an existing building, this element is used. Based on the Iranian seismic code, a six-story reinforced concrete building is modelled and studied with 3D analysis. In this building, the construction shortcomings and elimination of infills on the ground floor cause the formation of a soft story. Results of nonlinear static analysis, nonlinear dynamic, and incremental dynamic analysis using both components of seismic acceleration applied to the structure at different angles and the fragility curves indicate the improvement of the retrofitted structure's performance using the modified element to reach the required performance level following the retrofit code.

A Study on Drainage Capacity of PBD Installed in Deep Soft Ground (대심도 연약지반에 적용되는 PBD의 통수능에 관한 연구)

  • Byun, Yo-Seph;Ahn, Byung-Je;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.67-76
    • /
    • 2009
  • The problems of bearing capacity, settlement and shear deformation occur when constructing a structure such as harbor, airport and bridge on soft ground of marine clay, silty clay or sandy soil. Various ground improvement methods are applied to obtain preceding settlement of soft ground and strength increase. In this study, to analyze the applicability of PBD method in deep soft ground, the compound drainage capacity test was operated in comparison with SD. As a result of the test, a minimum drainage capacity of drain material was estimated to be more than $10\;cm^3/sec$ at a more than $400\;kN/m^2$ and less than $5\;cm^3/sec$ at a more than $500\;kN/m^2$ confining pressure in case of single core PBD. In case of double core PBD, it was estimated to be more than $10\;cm^3/sec$ at a more than $500\;kN/m^2$ confining pressure.

A Study on the Relaxion of Secondary Compression Settlement using Preloading Method (프리로딩에 의한 2차 압밀침하량 감소에 관한 연구)

  • Huh, Ik-Chang;Im, Jong-Chul;Chang, Ji-Gun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1086-1093
    • /
    • 2005
  • In soft ground, consolidation settlement is mainly consider. The primary consolidation settlement which is the time when the excess pore water pressure is completely dispersed and the secondary consolidation settlement which follows. Recently as the depth of consolidation layer increases the consideration of not only the primary consolidation settlement but also of the secondary consolidation settlement becomes a very important element. But up to the present there were only a few in-depth study of the secondary consolidation settlement performed. At present there are a lot of methods available when it comes to the improvement of soft soil. In this study, Preloading Method which is the most commonly used soft soil improvement method locally was used in order to investigate the method for the reduction of secondary consolidation settlement. The objective of this study is to determine the amount of preloading required to reduce secondary consolidation settlement and to determine whether secondary consolidation settlement using standard consolidation test.

  • PDF

Evaluation of monotonic and cyclic behaviour of geotextile encased stone columns

  • Ardakani, Alireza;Gholampoor, Naeem;Bayat, Mahdi;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Stone column installation is a convenient method for improvement of soft ground. In very soft clays, in order to increase the lateral confinement of the stone columns, encasing the columns with high stiffness and creep resistant geosynthetics has proved to be a successful solution. This paper presents the results of three dimensional finite element analyses for evaluating improvement in behaviour of ordinary stone columns (OSCs) installed in soft clay by geotextile encasement under monotonic and cyclic loading by a comprehensive parametric study. The parameters include length and stiffness of encasement, types of stone columns (floating and end bearing), frictional angle and elastic modulus of stone column's material and diameter of stone columns. The results indicate that increasing the stiffness of encasement clearly enhances cyclic behaviour of geotextile encased stone columns (GESCs) in terms of reduction in residual settlement. Performance of GESCs is less sensitive to internal friction angle and elasticity modulus of column's materials in comparison with OSCs. Also, encasing at the top portion of stone column up to triple the diameter of column is found to be adequate in improving its residual settlement and at all loading cycles, end bearing columns provide much higher resistance than floating columns.

Field behaviour geotextile reinforced sand column

  • Tandel, Yogendra K.;Solanki, Chandresh H.;Desai, Atul K.
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.195-211
    • /
    • 2014
  • Stone columns (or granular column) have been used to increase the load carrying capacity and accelerating consolidation of soft soil. Recently, the geosynthetic reinforced stone column technique has been developed to improve the load carrying capacity of the stone column. In addition, reinforcement prevents the lateral squeezing of stone in to surrounding soft soil, helps in easy formation of stone column, preserve frictional properties of aggregate and drainage function of the stone column. This paper investigates the improvement of load carrying capacity of isolated ordinary and geotextile reinforced sand column through field load tests. Tests were performed with different reinforcement stiffness, diameter of sand column and reinforcement length. The results of field load test indicated an improved load carrying capacity of geotextile reinforced sand column over ordinary sand column. The increase in load carrying capacity depends upon the sand column diameter, stiffness of reinforcement and reinforcement length. Also, the partial reinforcement length about two to four time's sand column diameter from the top of the column was found to significant effect on the performance of sand column.

Instrumentation Management of Differential Settlement of the Deep Soft Ground with Dredged Clay Reclaimed in the Upper (대심도 준설 매립지반에서의 층별침하 계측관리에 관한 사례 연구)

  • Tae-Hyung Kim;Seung-Chan Kang;Ji-Gun Chang;Soung-Hun Heo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.87-96
    • /
    • 2023
  • There are a lot of difference between the surface settlement and the differential settlement measured at the Busan New Port, where the dredged and reclaimed clay layer exists and below the clay is originally thickly distributed. To find the cause and solution of this, the actual conditions of each differential settlement used for the soft ground improvement, characteristics, installation method, measurement frequency, measurement data management, and data analysis of each type were considered. In the deep soft ground improvement work where large deformation occurs, the bending deformation of the screw-type differential settlement gauge is less than that of other types of measuring instruments, so there is less risk of loss, and the reliability of data is relatively high as the instruments are installed by drilling for each stratum. Since the greater the amount of high-precision settlement measurement data, the higher the settlement analysis precision. It is necessary to manage with higher criteria than the measurement frequency suggested in the standard specification. For the data management of the differential settlement gauge, it is desirable to create graphs of the settlement and embankment height of the relevant section over time, such as surface, differential, and settlement of pore water pressure gauge for each point. In the case of multi-layered ground with different compression characteristics, it is more appropriate to perform settlement analysis by calculating the consolidation characteristics of each stratum using a differential settlement data.