• Title/Summary/Keyword: Sodium-water reaction (SWR)

Search Result 9, Processing Time 0.021 seconds

Impingement wastage experiment with SUS 316 in a printed circuit steam generator

  • Siwon Seo;Bowon Hwang;Sangji Kim;Jaeyoung Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.257-264
    • /
    • 2024
  • The sodium cooled fast reactor (SFR) is one of the Gen-IV reactors with the most operating experience accumulated. Although the technology level is the most mature among the Gen-IV reactors, there is still a safety problem that has not been solved, which is the sodium-water reaction. Since sodium and water are separated only by a heat transfer tube with a thickness of only a few mm, there is inherently a risk of a sodium-water reaction (SWR) accident in the SFR. In this study, it is attempted to quantitatively evaluate the resistance of SWR accidents by replacing the shell and tube steam generator with printed circuit steam generator (PCSG) as a method to mitigate the SWR accident. To do this, a CATS-S (Compact Accident Tolerance Steam Generator-SWR) facility was designed and built. And for the quantitative evaluation of accident resistance, a methodology for measuring the impingement wastage rate was established. As a result of this research, the impingement wastage rate caused by SWR generated in a PCSG was measured first time. It was confirmed that the impingement wastage phenomenon was suppressed in the PCSG, and the accident resistance was higher than that of the SWR through comparison with the experimental results performed in the existing shell and tube steam generator. In conclusion, a PCSG is more resistant to impingement wastage as a result of the SWR accident than existing shell and tube steam generators, and it is estimated that a PCSG can mitigate SWR accidents, an inherent problem of SFR.

Fundamental evaluation of hydrogen behavior in sodium for sodium-water reaction detection of sodium-cooled fast reactor

  • Tomohiko Yamamoto;Atsushi Kato;Masato Hayakawa;Kazuhito Shimoyama;Kuniaki Ara;Nozomu Hatakeyama;Kanau Yamauchi;Yuhei Eda;Masahiro Yui
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.893-899
    • /
    • 2024
  • In a secondary cooling system of a sodium-cooled fast reactor (SFR), rapid detection of hydrogen due to sodium-water reaction (SWR) caused by water leakage from a heat exchanger tube of a steam generator (SG) is important in terms of safety and property protection of the SFR. For hydrogen detection, the hydrogen detectors using atomic transmission phenomenon of hydrogen within Ni-membrane were used in Japanese proto-type SFR "Monju". However, during the plant operation, detection signals of water leakage were observed even in the situation without SWR concerning temperature up and down in the cooling system. For this reason, the study of a new hydrogen detector has been carried out to improve stability, accuracy and reliability. In this research, the authors focus on the difference in composition of hydrogen and the difference between the background hydrogen under normal plant operation and the one generated by SWR and theoretically estimate the hydrogen behavior in liquid sodium by using ultra-accelerated quantum chemical molecular dynamics (UA-QCMD). Based on the estimation, dissolved H or NaH, rather than molecular hydrogen (H2), is the predominant form of the background hydrogen in liquid sodium in terms of energetical stability. On the other hand, it was found that hydrogen molecules produced by the sodium-water reaction can exist stably as a form of a fine bubble concerning some confinement mechanism such as a NaH layer on their surface. At the same time, we observed experimentally that the fine H2 bubbles exist stably in the liquid sodium, longer than previously expected. This paper describes the comparison between the theoretical estimation and experimental results based on hydrogen form in sodium in the development of the new hydrogen detector in Japan.

Evaluation of a Sodium-Water Reaction Event Caused by Steam Generator Tubes Break in the Prototype Generation IV Sodium-cooled Fast Reactor

  • Ahn, Sang June;Ha, Kwi-Seok;Chang, Won-Pyo;Kang, Seok Hun;Lee, Kwi Lim;Choi, Chi-Woong;Lee, Seung Won;Yoo, Jin;Jeong, Jae-Ho;Jeong, Taekyeong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.952-964
    • /
    • 2016
  • The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium-water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium-water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

NUMERICAL APPROACH FOR QUANTIFICATION OF SELFWASTAGE PHENOMENA IN SODIUM-COOLED FAST REACTOR

  • JANG, SUNGHYON;TAKATA, TAKASHI;YAMAGUCHI, AKIRA;UCHIBORI, AKIHIRO;KURIHARA, AKIKAZU;OHSHIMA, HIROYUKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.700-711
    • /
    • 2015
  • Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called "self-wastage phenomena." A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodiumwater reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm).

INTERPARTICLE POTENTIAL OF 10 NANOMETER TITANIUM NANOPARTICLES IN LIQUID SODIUM: THEORETICAL APPROACH

  • KIM, SOO JAE;PARK, GUNYEOP;PARK, HYUN SUN;KIM, MOO HWAN;BAEK, JEHYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.662-668
    • /
    • 2015
  • A suspension of titanium nanoparticles (Ti NPs) in liquid sodium (Na) has been proposed as a method to mitigate the violent sodium-water reaction (SWR). The interparticle potential between Ti NPs in liquid Na may play a significant role in the agglomeration of NPs on the reaction surface and in the bulk liquid Na, since the potential contributes to a reduction in the long-term dispersion stability. For the effective control of the SWR with NPs, a physical understanding of the molecular dynamics of NPs in liquid Na is key. Therefore in this study, the nonretarded Van der Waals model and the solvation potential model are employed to analyze the interparticle potential. The ab initio calculation reveals that a strong repulsive force driven by the solvation potential exceeds the interparticle attraction and predicts the agglomeration energy required for two 10-nm Ti NPs to be $4{\times}10^{-17}J$. The collision theory suggests that Ti NPs can be effective suppressors of the SWR due to the high energy barrier that prevents significant agglomeration of Ti NPs in quiescent liquid Na.

Evaluation of the SWR′s Early Pressure Variations in the KALIMER IHTS (KALIMER IHTS의 SWR 초기 압력파 거동 분석)

  • 김연식;심윤섭;김의광;어재혁
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.122-129
    • /
    • 2002
  • The analytical models and algorithm of the SPIKE code, which has been developed by KAERI's KALIMER team to investigate the sodium-water reaction phenomena in the liquid metal reactor, were introduced with its verification calculation results. The sodium water reaction of KALIMER IHTS was evaluated. Early stage of the sodium-water reaction consists of wave and mass transfer regimes. The pressure variations were independent of specific design features in the wave transfer regime. However in the mass transfer regime, the pressure variations were strongly dependent on cover gas volume and rupture disk set pressure. The early stage SWR analysis showed that the KALIMER IHTS with an appropriate cover gas volume and rupture disk set pressure had enough margin to its design pressure.

A New LMR SG with a Double Tube Bundle Free from SWR

  • Sim Yoon-Sub;Kim Seong-O;Kim Eui Kwang;Hahn Do Hee
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.566-580
    • /
    • 2003
  • To resolve the concern of the SWR possibility in LMR and improve the economic feature of LMR, relative performance of various SG designs using a double tube bundle configuration is evaluated and a new SG design concept is proposed. The new steam generator design houses two tube bundles that are functionally different and its tube bundle region is radially divided into two. It prevents the occurrence of sodium water reaction while sodium is still used as the coolant for the primary heat transport system. The feasibility of the SG with a double tube bundle for actual use in an LMR plant is evaluated by setting up the skeleton of the NSSS for various possible configurations of the SG tube bundles. The evaluation revealed the relative advantages and disadvantages of the configurations and the new SG design concept performs good and can be actually used in an LMR plant.

Conceptual design of a copper-bonded steam generator for SFR and the development of its thermal-hydraulic analyzing code

  • Im, Sunghyuk;Jung, Yohan;Hong, Jonggan;Choi, Sun Rock
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2262-2275
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) studied the sodium-water reaction (SWR) minimized steam generator for the safety of the sodium-cooled fast reactor (SFR), and selected the copper bonded steam generator (CBSG) as the optimal concept. This paper introduces the conceptual design of the CBSG and the development of the CBSG sizing analyzer (CBSGSA). The CBSG consists of multiple heat transfer modules with a crossflow heat transfer configuration where sodium flows horizontally and water flows vertically. The heat transfer modules are stacked along a vertical direction to achieve the targeted large heat transfer capacity. The CBSGSA code was developed for the thermal-hydraulic analysis of the CBSG in a multi-pass crossflow heat transfer configuration. Finally, we conducted a preliminary sizing and rating analysis of the CBSG for the trans-uranium (TRU) core system using the CBSGSA code proposed by KAERI.

Preliminary Design of the Supercritical $CO_2$ Brayton Cycle Energy Conversion System (초임계 이산화탄소 Brayton 에너지 전환계통 예비설계)

  • Cha, Jae-Eun;Eoh, Jae-Hyuk;Lee, Tae-Ho;Sung, Sung-Hwan;Kim, Tae-Woo;Kim, Seong-O;Kim, Dong-Eok;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3181-3188
    • /
    • 2008
  • The supercritical $CO_2$ Brayton cycle energy conversion system is presented as a promising alternative to the present Rankine cycle. The principal advantage of the S-$CO_2$ gas is a good efficiency at a modest temperature and a compact size of its components. The S-$CO_2$ Brayton cycle coupled to a SFR also excludes the possibilities of a SWR (Sodium-Water Reaction) which is a major safety-related event, so that the safety of a SFR can be improved. KAERI is conducting a feasibility study for the supercritical carbon dioxide (S-$CO_2$) Brayton cycle power conversion system coupled to KALIMER(Korea Advanced LIquid MEtal Reactor). The purpose of this research is to develop S-$CO_2$ Brayton cycle energy conversion systems and evaluate their performance when they are coupled to advanced nuclear reactor concepts of the type under investigation in the Generation IV Nuclear Energy Systems. This paper contains the research overview of the S-$CO_2$ Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system.

  • PDF