• Title/Summary/Keyword: Sodium-iodide symporter

Search Result 32, Processing Time 0.023 seconds

Increases in Doxorubicin Sensitivity and Radioiodide Uptake by Transfecting shMDR and Sodium/Iodide Symporter Gene in Cancer Cells Expressing Multidrug Resistance (다약제내성 암세포에서 shMDR과 Sodium/Iodide Symporter 유전자의 이입에 의한 Doxorubicin 감수성과 방사성옥소 섭취의 증가)

  • Ahn, Sohn-Joo;Lee, Yong-Jin;Lee, You-La;Choi, Chang-Ik;Lee, Sang-Woo;Yoo, Jeong-Soo;Ahn, Byeong-Cheol;Lee, In-Kyu;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.209-217
    • /
    • 2007
  • Purpose: Multidrug resistance (MDR) of the cancer cells related to mdr1 gene expression can be effectively treated by selective short hairpin RNA for mdr1 gene (shMDR). Sodium/iodide symporter (NIS) gene is well known to have both reporter and therapeutic gene characteristics. We have co-transfected both shMDR and NIS gene into colon cancer cells (HCT15 cell) expressing MDR and Tc-99m sestamibi and I-125 uptake were measured. In addition, cytotoxic effects of doxorubicin and I-131 therapy were also assessed after transfection. Material and Methods: At first, shMDR was transfected with liposome reagent into human embryonic kidney cells (HEK293) and HCT cells. shMDR transfection was confirmed by RT-PCR and western blot analysis. Adenovirus expressing NIS (Ad-NIS) gene and shMDR (Ad-shMDR) were co-transfected with Ad-NIS into HCT15 cells. Forty-eight hours after infection, inhibition of P-gycoprotein (Pgp) function by shMDR was analyzed by a change of Tc-99m sestamibi uptake and doxorubicin cytotoxicity, and functional activity of induced NIS gene expression was assessed with I-125 uptake assay. Results: In HEK293 cells transfected with shMDR, mdr1 mRNA and Pgp protein expressions were down regulated. HCT15 cells infected with 20 MOI of Ad-NIS was higher NIS protein expression than control cells. After transfection of 300 MOI of Ad-shMDR either with or without 10 MOI of Ad-NIS, uptake of Tc-99m sestamibi increased up to 1.5-fold than control cells. HCT15 cells infected with 10 MOI of Ad-NIS showed approximately 25-fold higher I-125 uptake than control cells. Cotransfection of Ad-shMDR and Ad-NIS resulted in enhanced cytotoxic by doxorubicin in HCT15 cells. I-131 treatment on HCT15 cells infected with 20 MOI of Ad-NIS revealed increased cytotoxic effect. Conclusion: Suppression of mdr1 gene expression, retention of Tc-99m sestamibi, enhanced doxorubicin cytotoxicity and increases in I-125 uptake were achieved in MDR expressing cancer cell by co-transfection of shMDR and NIS gene. Dual therapy with doxorubicin and radioiodine after cotransfection shMDR and NIS gene can be used to overcome MDR.

Immunohistochemical Expressions of Sodium/Iodide Symporter (NIS) and Thyroid Transcription Factor-l (TTF-1) and Their Relationship in Primary Pulmonary Adenocarcinoma

  • Lee Kyung-Eun;Kang Do-Young;Choi Phil-Jo;Hong Young-Seoub;Roh Mee-Sook;Shon Jae-Jeong;Lee Jung-Min;Hwang Soo-Myoung
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.171-176
    • /
    • 2006
  • Sodium iodide symporter (NIS) plays a key role in thyroid hormone production by efficiently accumulating iodide from the circulating blood into the thyocytes, and this is done against an electrochemical gradient. Thyroid transcription factor-l (TTF-l) is a homeodomain-containing protein expressed in embryonic diencephalons, thyroid, and lung and has been found to bind to thyroid specific promoters and to activate their transcriptional activity. TTF-l may be one of the factors capable of activating NIS gene expression in the thyroid gland, thus it accounts for the lower levels of NIS gene expression that are seen in the extrathyroidal tissues. However, a high frequency of TTF-l expression has been observed, especially in primary lung adenocarcinoma. The present study was undertaken in order to elucidate the relationship between the expression of NIS and TTF-l in primary lung adenocarcinoma. Immunohistochemical studies for NIS and TTF-l were performed in 64 primary lung adenocarcinomas. Immunoreactivities for NIS and TTF-l were found in 49 (76.6%) and 45 (70.3%) out of 64 cases, respectively. Forty-one (83.7%) of the 49 cases with positive NIS immunoreactivity showed positive TTF-l expression, whereas 11 (73.3%) of the 15 cases with negative NIS immunoreactivity showed negative TTF-l expression (P<0.05). So the NIS expression was significantly associated with the TTF-l expression. These findings suggest that TTF-l may be one of the factors capable of activating NIS gene expression in primary lung adenocarcinoma. Further studies are needed to define the relation between NIS and TTF-l for examining the mechanisms of tissue-specific NIS expression.

  • PDF

Transcriptional and Nontranscriptional Regulation of NIS Activity and Radioiodide Transport (NIS 기능의 전사 및 전사외 조절과 방사성옥소 섭취)

  • Jung, Kyung-Ho;Lee, Kyung-Han
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.5
    • /
    • pp.343-349
    • /
    • 2007
  • Radioiodide transport has been extensively and successfully used in the evaluation and management of thyroid disease. The molecular characterization of the sodium/iodide symporter (NIS) and cloning of the NIS gene has led to the recent expansion of the use of radioiodide to cancers of the breast and other nonthyroidal tissues exogenously transduced with the NIS gene. More recently, discoveries regarding the functional analysis and regulatory processes of the NIS molecule are opening up exciting opportunities for new research and applications for NIS and radio iodide. The success of NIS based cancer therapy is dependent on achievement of maximal radioiodide transport sufficient to allow delivery of effective radiation doses. This in turn relies on high transcription rates of the NIS gene. However, newer discoveries indicate that nontranscriptional processes that regulate NIS trafficking to cell membrane are also critical determinants of radioiodide uptake. In this review, molecular mechanisms that underlie regulation of NIS transcription and stimuli that augment membrane trafficking and functional activation of NIS molecules will be discussed. A better understanding of how the expression and cell surface targeting of NIS proteins is controlled will hopefully aid in optimizing NIS gene based cancer treatment as well as NIS based reporter-gene imaging strategies.

All-trans-retinoic Acid Promotes Iodine Uptake Via Up-regulating the Sodium Iodide Symporter in Medullary Thyroid Cancer Stem Cells

  • Tang, Min;Hou, Yan-Li;Kang, Qiang-Qiang;Chen, Xing-Yue;Duan, Li-Qun;Shu, Jin;Li, Shao-Lin;Hu, Xiao-Li;Peng, Zhi-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1859-1862
    • /
    • 2014
  • Recently, the main therapy of medullary thyroid cancer (MTC) is surgical, but by which way there is a poor prognosis with a mean survival of only 5 years. In some cases, some researchers found that it is the medullary thyroid cancer stem cells (MTCSCs) that cause metastasis and recurrence. This study aimed to eradicate MTCSCs through administration of all-trans-retinoic acid (ATRA). Here we demonstrate that MTCSCs possess stemlike properties in serum-free medium. The ABCG2, OCT4 and sodium iodide symporter (NIS) were changed by ATRA. Additionally, we found that ATRA can increase the expression of NIS in vivo. All the data suggested that ATRA could increase the iodine uptake of MTCSCs through NIS.