• Title/Summary/Keyword: Sodium concentrated solution

Search Result 35, Processing Time 0.023 seconds

Electrochemical Desalination of a 50% w/w Sodium Hydroxide Solution, a Pharmaceutical Sterilization Agent

  • Jaehong Lee;Ji-hyun Yang;Eugene Huh;Sewon Park;Bonmoo Koo;Ik-Sung Ahn
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.59-65
    • /
    • 2023
  • Sodium hydroxide solutions are often employed as sterilization agents in the pharmaceutical industry. Here, the chloride content is considered as a critical impurity. In this study, an electrochemical method was developed to remove chloride ions (Cl-) through the oxidative deposition of AgCl on a Ag anode. The Cl- content in the commercially available 50% w/w NaOH solution employed was approximately 100 mg Cl-/kg NaOH. As the OH- content is approximately 18,000 times higher than the Cl- content, the formation of AgCl may be expected to be thermodynamically less favorable than the formation of Ag2O. However, activation energies for AgCl and Ag2O formation have been reported to be approximately 3.8 and 31.2 kJ/mol, respectively, and indicate that AgCl formation is favored. AgCl can be selectively produced by controlling the anode potential. Here, the Cl- concentration was reduced to less than 50 mg Cl-/kg NaOH when an anode potential of 0.18 or 0.19 V vs. Hg/HgO (reference electrode) was applied for one hour at 50℃. XRD analysis and visual monitoring of the Ag anode confirmed the oxidative deposition of AgCl on the anode surface as well as the electrochemical desalination of the concentrated NaOH solution.

Analysis of Benzophenone in Sediment and Soil by Gas Chromatography/Mass Spectrometry (기체크로마토그래피/질량분석기에 의한 저질 및 토양시료 중 벤조페논의 분석법 연구)

  • 권오승;김은영;류재천
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.3
    • /
    • pp.121-126
    • /
    • 2001
  • Analytical method of benzophenone (BP) in sediment and soil was developed by gas chromatography/mass selective detector/selected ion monitoring (GC/MSD/SIM). The ultrasonic extraction of US EPA (method 3550B) method and liquid-liquid extraction for sediment and soil samples were used for the analysis of BP from sediment and soil. BP was extracted with n-hexane. Organic layer was washed with 5% sodium chloride solution. 1∼2 l of the concentrated solution of organic layer was applied to GC/MSD. The retention time of BP peak was 11.10 min. Recovery (%) of BP by ultrasonication from sediment and soil samples was 96.0∼100.6% and 40.0∼83.0%, respectively. Recovery of BP by liquid-liquid extraction was 51∼59% in soil samples. The detection limit of BP in sediment and soil samples were determined to 0.1 ng/g.

  • PDF

Gas Chromatographic Analysis on Residual Difenoconazole in Apple and Soil (사과와 토양 중에서 Difenoconazole의 잔류성에 대한 기체 크로마토그래피 분석)

  • Han, Sung Soo;Kim, Il Kwang
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.123-133
    • /
    • 1996
  • The optimum conditions for the analysis of the difenoconazole fungicide on soil and crops were investigated and the residues of that in apple and soil were identified by using the gas chromatography. The extract with acetonitrile was separated with saturated NaCl and n-hexane solution after filtered, and concentrated. Obtained fungicide residues were transfered to the florisil column and eluted with acetone and n-hexane mixed solution for the analysis by GLC(ECD). From the standard addition experiments with 0.20 and 1.0ppm, the average recoveries were 86~92% and the detection limit was 0.01 ppm. It seems to be safely used when difenoconazole is treated three times until 15 days before harvest of apple. In this case residual amounts of difenoconazole in apple was from 0.037ppm to 0.044ppm. The soil samples extracted with methanol and ammonium hydroxide mixed solution were partitioned with dichloromethane and saturated sodium chloride solution. The organic phase was concentrated and redissolved with toluene and analyzed with GLC(FID) after cleaned with Sep-Pak column. From the standard addition experiments with 0.10, 0.50 and 1.0ppm, the average recoveries were 101.2~103.7% and the detection limit was 0.025ppm.

  • PDF

Influence of SO42- Ions Concentration on Sulfate Resistance of Cement Mortars (시멘트 모르타르의 황산염침식 저항성에 대한 SO42- 이온 농도의 영향)

  • Lee, Seung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.757-764
    • /
    • 2008
  • This paper was conducted to evaluate the durability of cement mortars exposed to varying concentrations of sodium sulfate for up to 540 days. Three types of cement mortars, namely OPC, SRC and SGC, were exposed to four sodium sulfate solutions with concentrations of 4225, 8450, 16900 and 33800 ppm of ${SO_4}^{2-}$ ions at ambient temperature. The sulfate deterioration was evaluated by measuring compressive strength and linear expansion of mortar specimens. Experimental results indicated that the maximum deterioration was noted in OPC mortar specimens in highly concentrated sulfate solution. In particular, the $C_3A$ content in cements plays a critical role in resisting expansion due to sodium sulfate attack. Additionally, the beneficial effect of GGBS was clearly observed showing a superior resistance against sodium sulfate attack, because of its lower permeability. Another important observation was that the parameters for the evaluation of deterioration degree are greatly dependent on the products formed by sulfate attack.

Study on the Stability of NaBH4 Solution during Storage Process (NaBH4수용액 저장과정 중 안정성에 관한 연구)

  • Sim, Woojong;Jo, Jaeyoung;Choi, Daeki;Nam, Sukwoo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.322-326
    • /
    • 2010
  • Stability of sodium borohydride solution during storage was studied. In order to enhance the $NaBH_4$ stability, NaOH and KOH were added to the $NaBH_4$ solution. The effect of concentration of the borohydride and alkaline solution, temperature and materials of storage vessels on the rate of borohydride hydrolysis was investigated. The rate of hydrogen evolution decreased as the concentration of alkaline increased due to increase of $NaBH_4$ stability in the solution. The stability of $NaBH_4$ solution decreased when the borohydride concentration raised from 10 to 15 wt% and then increased when the $NaBH_4$ concentration increased above 15 wt% due to increase in the pH of the concentrated solution. The activity coefficient of hydrolysis of $NaBH_4$ solution(NaOH 3.0 wt%, $NaBH_4$ 25 wt%) was 115.1 kJ/mol and this value was 1.5~4.0 times higher than that of hydrolysis of $NaBH_4$ solution with catalyst. The borohydride solutions in glass and stainless-steel vessel were more stable than the solution in plastic(PE) vessel.

Identification of Species-Specific Components between Hanwoo and Holstein Meat (한우 및 홀스타인육의 품종간 특이성분의 검색에 관한 연구)

  • 황보식;이수원;임태진;정구용
    • Food Science of Animal Resources
    • /
    • v.21 no.3
    • /
    • pp.246-255
    • /
    • 2001
  • Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of muscles extracted with distilled water, saline solution, SDS or Trition X-100 showed simular protein patterns between Hanwoo and Holstein meat, indicating that SDS-PAGE technique may not be useful for the identification between Hanwoo and Holstein meat. Lectine blot analysis of muscle extracted with distilled water demonstrated that Hanwoo and Holstein meat had similar affinities for concanavalin A (Con A), ricinus communis agglutinin (RCA-120), ulex europaeus agglutinin (UEA-1) or peanut agglutinin (PNA) lectins. However, approximately 32.1 kDa component of Hanwoo meat showed high affinity for dolichos biflorus agglutinin (DBA) lectin. On the contrary, high molecular weight components of Holstein meat had the specific affinity for wheat germ agglutinin (WGA) lectin. Hanwoo meat-specific components were observed by lectin staining of heat-denatured meat at 100$^{\circ}C$ for 30 sec. Also, the component of heat-denatured meat at 100$^{\circ}C$ for 30 sec, which was slightly smaller than Hanwoo meat-specific component, was concentrated specifically in Holstein meat.

  • PDF

Simultaneous Concentration and Determination of Several Trace Elements in Sea Water by Ce(OH)$_3$ Coprecipitation (Ce(OH)$_3$의 공침부선에 의한 해주중 몇 가지 미량원소의 동시 농축 및 정량)

  • Woo-Sik Sung;Hee-Seon Choi;Young-Sang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.3
    • /
    • pp.327-333
    • /
    • 1993
  • A method was developed for the determination of trace elements in seawater by precipitate flotation preconcentration and subsequent flame atomic absorption detection. In order to quantitatively coprecipitate trace ions such as Cd(II), CuI(II), Fe(III), Mn(II), Pb(II) and Pd(II), 2.0 ml of 1.0M cerium(III) solution was added to 1.0l of seawater and the pH was adjusted to 9.5 with 5.0 M sodium hydroxide solution while stirring with a magnetic stirrer. The precipitate was floated with the aid of surfactant solution (1.0 ml of 0.3% sodium oleate) by bubbling nitrogen gas through a porous (No. 4) fritted glass disk. The floats was collected in a small Erlenmeyer flask by suction. The washed precipitate was dissolved in 8.0 M nitric acid and marked with deionized water in the volumetric flask of 10.0 ml. The analyte was determined by measuring the atomic absorbances in 100-fold concentrated solution. Above all analytes in Kangnung (East Sea) and Kanghwado (West Sea) sea waters were found to be under the detection limit of this method. The recoveries of over 92% for all analytes spiked into seawater samples showed that this method was applicable to the analysis of real seawater.

  • PDF

Analysis of Residual Nuarimol in Apples (사과 중 Nuarimol의 잔류성 분석)

  • Kim, Il Kwang;Han, Seong Soo;Kim, Youn Geun;Kim, Hea Jin
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.283-288
    • /
    • 1993
  • The solvent extraction and clean up processes for the gas chromatographic determination of muarimol pesticide residues in apples were investigated and examined the changes of residual concentration with the passage of time. The extracted pesticide with methanol were partitioned with dichloromethane after adding sodium chloride solution. The separated solutions were concentrated and transfered to the alumina column for clean up, and eluated with 1-chlorobutane : methanol solution. As a results their recovering for 0.200 and 1.00ppm muarimol spiked on apples have shown 79~95%. Residual amounts of nuarimol in apple was 0.0830ppm when the fungicide was treated eight times until 3 days before its harvest. It seems to be safely used when nuarimol is treated six times until 7 days before harvest of apple.

  • PDF

SELF-PREPARATION OF BATHYTHERMOGRAPH SMOKED-GLASS SLIDE (Bathythermograph Smoked-glass slide의 간역제작법)

  • HUE Jong Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.135-137
    • /
    • 1968
  • Bathythermograph (B. T) has been coumonly used to obtain a records of water temperature in the depth of 270m from the surface. We have, however, experienced some difficulties in obtaining smoked or coated glass which is used for the bathythermograph in this region, Therefore I introduce a easy method of preparing the smoked-glass slide. Preparing method is as follows. 1. Glass slides must be cleaned by dipping into the concentrated solution of sodium hydroxide ana hydrochloric acid then rinsing with hot water and polishing with a clean gauge. 2. The cleaned slide is immersed in the wax solution for coating, and dried on the filter paper. The Wax solution is prepared as follow : 1g of white wax is dissolved in 200CC of benzol or 1g of lard is dissolved in 300CC of gasoline. 3. A slide held in a fingertip is smoked on the flame of alcohol lamp, or Meter burner. When alcohol lamp is used the fuel alcohol must contain 1/5 of benzol, and when Meker burner is used, the air intake must be blocked up. The smoking on the glass slide should be light and uniform, after smoking the slide is cooled down. 4. The smoked glass slide is again dipped into the wax solution using a fingertip and the excessive wax solution on the slide is absorbed on the filter paper and drain off. 5. Thus prepared smoked slide can be used for B.T.

  • PDF

Separation and Recovery of Rare Earth Elements from Phosphor Sludge of Waste Fluorescent Lamp by Pneumatic Classification and Sulfuric Acidic Leaching

  • Takahashi, Touru;Takano, Aketomi;Saitoh, Takayuki;Nagano, Nobuhiro;Hirai, Shinji;Shimakage, Kazuyoshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.421-426
    • /
    • 2001
  • The pneumatic classification and acidic leaching behaviors of phosphor sludge have been examined to establish the recycling system of rare earth components contained in waste fluorescent lamp. At first, separation characteristic of rare earth components and calcium phosphate in phosphor sludge was investigated by pneumatic classification. After pneumatic classification of phosphor sludge, rare earth components were leached in various acidic solutions and sodium hydroxide solution. For recovery of soluble component in leaching solution, rare earth components were separated as hydroxide and oxalate precipitations. The experimental results obtained are summarized as follows: (1) In classification process, rare earth components in phosphor sludge were concentrated to 29.3% from 13.3%, and its yield was 32.9%. (2) In leaching process, sulfuric acid solution was more effective one as a leaching solvent of rare earth component than other solutions. Y and Eu components in phosphor sludge were dissolved in sulfuric acid solution of 1.5 k㏖/㎥, and other rare earth components were rarely dissolved in leaching solution. Leaching degrees of Y and Eu were respectively 92% and 98% in the following optimum leaching conditions; sulfuric acid concentration is 1.5 k㏖/㎥ , leaching temperature 343 K, leaching time 3.6 ks and pulp concentration 30 kg/㎥. (3) Y and Eu components of phosphor sludge contained in waste fluorescent lamp were, effectively recovered by three processes of pneumatic classification, sulfuric acid leaching and oxalate precipitation methods. Their recovery was finally about 65 %, and its purity was 98.2%.

  • PDF