• Title/Summary/Keyword: Soda lime

Search Result 270, Processing Time 0.024 seconds

Preparation of nanocrystalline $TiO_2$ photocatalyst films by using a titanium naphthenate (티타늄 나프테네이트를 이용한 나노결정질 $TiO_2$ 광촉매 박막의 제조)

  • 이선옥;김상복;윤연흠;강보안;황규석;오정선;양순호;김병훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.240-246
    • /
    • 2002
  • $TiO_2$ films on soda-lime-silica glasses were prepared by spin coating-pyrolysis process using titanium naphthenate as a starting material. As-deposited films were pyrolyzed at $500^{\circ}C$ for 10 min in air and annealed at 500, 550 and $600^{\circ}C$ for 30 min in air. Crystallinity of the film was investigated by X-ray diffraction analysis. A field emission-scanning electron microscope and an atomic force microscope were used for characterizing the surface morphology and the surface roughness of the film. After annealing at 550 and $600^{\circ}C$, the X-ray diffraction patterns consist of only anatase peak. Films annealed at 500 and $550^{\circ}C$ exhibited flat surfaces. While with the increase in annealing temperature to $600^{\circ}C$, the $TiO_2$ film showed abnormal growth of three-dimensional needle-shaped grains. For all samples, high transmittance, above 90 % at 500 nm, was obtained at visible range. To investigate photocatalytic properties, IR absorbance associated with the C-H stretching vibrations of a thin solution-cast film of stearic acid under 365 nm (2.4 mW/$\textrm{cm}^2$) UV irradiation was estimated.

A Study on Properties of N-type ZnS Deposited at Various RF Power for Solar Cell Applications (RF Power에 따른 태양전지용 N-type ZnS 특성연구)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Jeong, Woon-Jo;Lee, Suk-Ho;So, Soon-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hea-Duck
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.574-577
    • /
    • 2011
  • In this study, we use the $2.5cm{\times}7.5cm$ soda lime glass as the substrate. We used the ultrasonicator. Glass was dipped in the acetone, methanol and DI water respectively for 10 minutes. Ar(99.99%)gas was used as the sputtering gas. We varied the RF power between 100~175 W with 25 W steps. Base pressure was kept by turbo molecular pump at $3.0{\times}10^{-6}$ torr. Working pressure was kept by injection of Ar gas. ZnS thin films were deposited with the radio frequency magnetron sputtering technique at various temperatures and sputtering powers. It is also clearly observed that, the intensity of the (111) XRD peak increases with increasing the RF power. Electrical properties were measured by hall effect methods at room temperature. The resistivity, carrier concentration, and hall mobility of ZnS deposited on glass substrate as a function of sputtering power. It can be seen that as the sputtering power increase from 100 to 175 W, the resistivity of the films on glass decreased significantly from $8.1{\times}10^{-2}$ to $1.2{\times}10^{-3}\;{\Omega}{\cdot}cm$. This behavior could be explained by the effect of the sputtering power on the mobility and carrier concentration. When the RF power increases, the carrier concentration increases slightly while the resistivity decreases significantly. These variation originate from improved crystallinity and enhanced substitutional doping as the sputtering power increases.

Colored coating of SiO2-TiO2-MxOy(M = Cu, Co, Cr) thin films by the sol-gel process (졸-겔법에 의한 SiO2-TiO2-MxOy(M=Cu, CO, Cr)계 박막의 제조 및 색상에 관한 연구)

  • Kim, Sangmoon;Lim, Yongmu;Hwang, Kyuseog
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.3 no.1
    • /
    • pp.229-235
    • /
    • 1998
  • This paper reports the preparation and characterization of colored coatings of $SiO_2-TiO_2-M_xO_y$ (M = Co, Cr or Cu). Films of different compositions ranging from a molar content of transition metals of 5% to 20% have been prepared on soda-lime-silica slide glasses by the sol-gel process. The films have been characterized by a photospectroscopy. The color and reflectance of the films was expressed in Lab color chart and on spectra plot. 'L' as lightness and all reflectance decreased with increase of the content of transition metals. The coating of Co, Cu and Cr cotaining system showed light blue, green and lemon-yellowish color, respectively.

  • PDF

A Study on Properites of PV Solar cell AZO thin films post-annealing by RTP technique (RTP 공정을 통한 태양전지용 AZO 박막의 후열처리 특성연구)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Han, Chang-Jun;So, Soon-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hea-Deok;Lee, Suk-Ho;Back, Su-Ung;Na, Kil-Ju;Jeong, Woon-Jo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.127.1-127.1
    • /
    • 2011
  • In this paper, ZnO:Al thin films with c-axis preferred orientation were prepared on Soda lime glass substrates by RF magnetron sputtering technique. AZO thin film were prepared in order to clarify optimum conditions for growth of the thin film depending upon process, and then by changing a number of deposition conditions and substrate temperature conditions variously, structural and electrical characteristics were measured. For the manufacture of the AZO were vapor-deposited in the named order. It is well-known that post-annealing is an important method to improve crystal quality. For the annealing process, the dislocation nd other defects arise in the material and adsorption/decomposition occurs. The XRD patterns of the AZO films deposited with grey theory prediction design, annealed in a vacuum ambient($2.0{\times}10-3$Torr)at temperatures of 200, 300, 400 and $500^{\circ}C$ for a period of 30min. The diffraction patterns of all the films show the AZO films had a hexagonal wurtzite structure with a preferential orientation along the c-axis perpendicular to the substrate surface. As can be seen, the (002)peak intensities of the AZO films became more intense and sharper when the annealing temperature increased. On the other hand, When the annealing temperature was $500^{\circ}C$ the peak intensity decreased. The surface morphologies and surface toughness of films were examined by atomic force microscopy(AFM, XE-100, PSIA). Electrical resistivity, Gall mobility and carrier concentration were measured by Hall effect measuring system (HL5500PC, Accent optical Technology, USA). The optical absorption spectra of films in the ultraviolet-visibleinfrared( UV-Vis-IR) region were recorder by the UV spectrophotometer(U-3501, Hitachi, Japan). The resistivity, carrier concentration, and Hall mobility of ZnS deposited on glass substrate as a function of post-annealing.

  • PDF

Coating and Characterization of Al2O3-CoO Thin Films by the sol-gel Process (졸-겔법을 이용한 Al2O3-CoO계 박막의 제조와 특성에 관한 연구)

  • Shim, Moonsik;Lim, Yongmu
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.123-128
    • /
    • 1999
  • This paper reports the preparation and characterization of colored coatings of $Al_2O_3$-CoO. Films of 25mol% CoO doped $Al_2O_3$, have been prepared on soda-lime-silica slide glasses by the sol-gel process from Al-alkoxide and Co-nitrate. The films have been characterized by a photospectroscopy and hardness tester. The color, spectral reflectance and spectral transmittance of the films was expressed in Lab color chart and on spectra plot. Microhardness of the films increased with increasing of the heating temperature. Transmittance and reflectance of the films decreased with increase of the heating temperature and coating times. The coating films showed various light-yellow, deep-yellow, greenish-yellow color as a function of the coating times and heating temperature.

  • PDF

Evaluation of Transparent Amorphous $V_2O_5$ Thin Film Prepared by Thermal Evaporation (진공증착법으로 제조한 투명 비정질 $V_2O_5$박막의 특성평가)

  • Hwang, Kyu-Seog;Jeong, Seol-Hee;Jeong, Ju-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.27-30
    • /
    • 2008
  • Purpose: This research is that $V_2O_5$ cathode's composition is possible in low temperature. Methods: Transparent in visible spectra range and crystallographically amorphous $V_2O_5$ thin films were prepared by simple vacuum thermal evaporation on soda-lime-silica slide glass substrate. After annealing at 100$^{\circ}C$, 150$^{\circ}C$ and 200$^{\circ}C$ for 10 minutes in air, the surface morphology and the fracture-cross section of the films were investigated by field emission - scanning electron microscope. Transmittance in visible spectra range and surface roughness of the films were analyzed by ultra violet - visible spectrophotometer and scanning probe microscope, respectively. Results: As the increase of annealing temperature from 100$^{\circ}C$ to 150$^{\circ}C$ and 200$^{\circ}C$, transmittance of the $V_2O_5$ films decreased. Optical properties will be fully discussed on the basis of the surface morphological results. Conclusions: Optical transmissivity was superior in case of 100$^{\circ}C$, and could make amorphous $V_2O_5$ thin film that surface quality of thin film did homogeneity.

  • PDF

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

Characterizations of CuInGaSe(CIGS) mixed-source and the thin film (CuInGaSe(CIGS)혼합 소스의 제작과 특성)

  • Lee, Ah-Reum;Jeon, Hun-Soo;Lee, Gang-Suok;Ok, Jin-Eun;Cho, Dong-Wan;Kim, Kyung-Hwa;Yang, Min;Yi, Sam-Nyeong;Ahn, Hyung-Soo;Cho, Chae-Ryong;Son, Sang-Ho;Ha, Henry
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • CuInGaSe(CIGS) mixed-source was prepared by hydride vapor phase epitaxy (HVPE). Each metal was mixed in regular ratio and soaked at $1090^{\circ}C$ for 90 minutes in nitrogen atmosphere. After making the mixed-source to powder state, the pellet was made by the powder. The diameter of pellet is 10 mm. The CIGS thin film was deposited on soda lime glass evaporated Mo layer bye-beam evaporator. To confirm the crystallization, we measured X-ray diffraction (XRD). High intensity X-ray peaks diffracted from (112), (204)/(220), (116)/(312) and (400) of CIGS thin film and from (110) of Mo were confirmed by XRD measurement.

The Effects on The Glass Processing by Alumina Addition in Soda Lime Glass (소다석회유리에서 Alumina첨가제에 따른 제병 공정의 영향)

  • Choi, Young-June;Kim, Jong-Ock;Kim, Taik-Nam
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.69-85
    • /
    • 2002
  • The chemical composition of bottle glass is consisted of Na2O-CaO-SiO2. However the cullet is mornally used in order to decrease the melting tsmperature. This induce the productivity of bottle and decreases the cost. The addition of plate glass decreases the Al2O3 content and in fluence the stone phenomenon and devitification in botle glass. Tus the Feldspar is added in order to increase the Al2O3 content when plate cullet was added in melting. The Tridymite crystal was observed over 7.5% Al2O3 contents, which shown as white crystal in appearance. It is Supposed that the Wollastonite Would be occurred in more over 7.5% Al2O3. This fad id well consised With the Litertctures.

  • PDF

Properties of Indium Tin Oxide Thin Films According to Oxygen Flow Rates by γ-FIB System (γ-FIB 시스템을 이용한 산소 유량 변화에 따른 산화인듐주석 박막의 특성 연구)

  • Kim, D.H.;Son, C.H.;Yun, M.S.;Lee, K.A.;Jo, T.H.;Seo, I.W.;Uhm, H.S.;Kim, I.T.;Choi, E.H.;Cho, G.S.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.333-341
    • /
    • 2012
  • Indium Tin Oxide (ITO) thin films were prepared by RF magnetron sputtering with different flow rates of $O_2$ gas from 0 to 12 sccm. Electrical and optical properties of these films were characterized and analyzed. ITO deposited on soda lime glass and RF power was 2 kW, frequency was 13.56 MHz, and working pressure was $1.0{\times}10^{-3}$ Torr, Ar gas was fixed at 1,000 sccm. The transmittance was measured at 300~1,100 nm ranges by using Photovoltaic analysis system. Electrical properties were measured by Hall measurement system. ITO thin films surface were measured by Scanning electron microscope. Atomic force microscope surface roughness scan for ITO thin films. ITO thin films secondary electron emission coefficient(${\gamma}$) was measured by ${\gamma}$-Focused ion beam. The resistivity is about $2.4{\times}10^{-4}{\Omega}{\cdot}cm$ and the weighted average transmittance is about 84.93% at 3 sccm oxygen flow rate. Also, we investigated Work-function of ITO thin films by using Auger neutralization mechanism according to secondary electron emission coefficient(${\gamma}$) values. We confirmed secondary electron emission peak at 3 sccm oxygen flow rate.