• Title/Summary/Keyword: Social big data analysis

Search Result 731, Processing Time 0.028 seconds

The Flipped Classroom Design for Capability Enhancement of Big-Data Analysis (빅데이터 분석의 역량 강화를 위한 거꾸로 교실 설계 연구)

  • Jung, Byoungho;Kim, Byungcho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.2
    • /
    • pp.127-145
    • /
    • 2017
  • The purpose of this study is to empirical case study for the instructional design of flipped classroom by job-capability advancement of IT business majors. A student of IT business school has learned a lot of management educations for four years. But, they don't recognize a connection between school education and business practice. A subject based on the humanities, and social sciences consisted of mostly the memorization. The undergraduate class lack a practice's curriculum by a creative-oriented lesson rather than memorization-oriented. In particular, An IT business is now recognized as a significance emerging IT investment, the Internet of Things, information security, big data and strategy's ERP. For these reasons, it is important for an instructional design for understanding business practices of the students. Accordingly, Flipped classroom with participatory class be needed increasingly for students' practical sense. We will propose a design method of flipped classroom for inspiring business education. In this, new instructional design overturned traditional teaching method. After the student conducts a prior learn at home, school will accomplish a problem solving through question and answer. This design effected a boredom suppress and creative enforcement of student and an intimacy increase of instructor. In addition, A participatory class and reciprocal peer tutoring will be possible by a spontaneous self-directed learning of student. We were designed course of project type based on big data theory and application to target the fourth-year course. In conclusion, the new instruction provided a help to learning synergy between student and lecturer. During the lessons, the student showed improvement of business sense and enhanced problem solving capability. The lecturer has the intimacy through communication interaction with students.

A Visitor Study of The Exhibition of Using Big Data Analysis which reflects viewing experiences

  • Kang, Ji-Su;Rhee, Bo-A
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.81-89
    • /
    • 2022
  • This study aims to analyze the images of Instagram posts and to draw implcations regarding the exhibition of . This study collects and crawl 24,295 images from Instagram posts as a dataset. We use the Google Cloud Vision API for labeling the images and a total of 212,567 clusters of labels are finally classified into 9 categories using Word2Vec. The categories of museum spaces, photo zone, architecture category are dominant along with people category. In conclusion, visitors curate their experiences and memories of physical places and spaces while they are experiencing with the exhibition. This result reproves the results of previous studies which emphasize a sense of social presence and place making. The convergent approach of art management and art technology used in this study help museum professionals have an insight on big data based visitor research on a practical level.

U-Net-based Recommender Systems for Political Election System using Collaborative Filtering Algorithms

  • Nidhi Asthana;Haewon Byeon
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2024
  • User preferences and ratings may be anticipated by recommendation systems, which are widely used in social networking, online shopping, healthcare, and even energy efficiency. Constructing trustworthy recommender systems for various applications, requires the analysis and mining of vast quantities of user data, including demographics. This study focuses on holding elections with vague voter and candidate preferences. Collaborative user ratings are used by filtering algorithms to provide suggestions. To avoid information overload, consumers are directed towards items that they are more likely to prefer based on the profile data used by recommender systems. Better interactions between governments, residents, and businesses may result from studies on recommender systems that facilitate the use of e-government services. To broaden people's access to the democratic process, the concept of "e-democracy" applies new media technologies. This study provides a framework for an electronic voting advisory system that uses machine learning.

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.

Topics and Sentiment Analysis Based on Reviews of Omni-Channel Retailing

  • KIM, Soon-Hong;YOO, Byong-Kook
    • Journal of Distribution Science
    • /
    • v.19 no.4
    • /
    • pp.25-35
    • /
    • 2021
  • Purpose: This study aims to analyze the factors affecting customer satisfaction in the customer reviews of omni-channel, posted on Internet blogs, cafes, and YouTube using text mining analysis. Research, data, and Methodology: In this study, frequency analysis is performed and the LDA (Latent Dirichlet Allocation) is used to analyze social big data to respond to reviewers' reaction to the recently opened omni-channel shopping reviews by L Shopping Company. Additionally, based on the topic analysis, we conduct a sentiment analysis on purchase reviews and analyze the characteristics of each topic on the positive or negative sentiments of omni-channel app users. Results: As a result of a topic analysis, four main topics are derived: delivery and events, economic value, recommendations and convenience, and product quality and brand awareness. The emotional analysis reveals that the reviewers have many positive evaluations for price policy and product promotion, but negative evaluations for app use, delivery, and product quality. Conclusions: Retailers can establish customized marketing strategies by identifying the customer's major interests through text mining analysis. Additionally, the analysis of sentiment by subject becomes an important indicator for developing products and services that customers want by identifying areas that satisfy customers and areas that evoke negative reactions.

Analysis of Yoga Keywords with Media Big Data (미디어 빅데이터를 통한 요가 관련 키워드 분석)

  • Chi, Dong-Cheol;Lim, Hyu-Seong;Kim, Jong-Hyuck
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.5
    • /
    • pp.365-372
    • /
    • 2022
  • South Korea is entering an aging society, and since the musculoskeletal system directly affects elders' daily life, muscle exercise and flexibility are required. In particular, yoga relaxes the mind and the body and heightens stress coping ability. To investigate keywords about yoga, news articles provided by BIGKinds, a news analysis system, was applied to collect articles from January 1, 2019, to December 31, 2021, and an analysis was conducted about the monthly keywords and the relationship followed by the weighted degree. Based on the research findings, first, it showed that there is high interest in yoga during the spring and autumn seasons. Second, yoga is offered in non-contact methods nowadays, and various social network services are applied for the operation. Third, there was high public attention to articles on yoga instructors and trainers, and this revealed the importance and interest in online coaching. It is anticipated to apply it for the development of yoga workout programs and base data to develop sports for all.

Sensitivity of abacus and Chasdaq in the Chinese stock market through analysis of Weibo sentiment related to Corona-19 (코로나-19관련 웨이보 정서 분석을 통한 중국 주식시장의 주판 및 차스닥의 민감도 예측 기법)

  • Li, Jiaqi;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Investor mood from social media is gaining increasing attention for leading a price movement in stock market. Based on the behavioral finance theory, this study argues that sentiment extracted from social media using big data technique can predict a real-time (short-run) price momentum in Chinese stock market. Collecting Sina Weibo posts that related to COVID-19 using keyword method, a daily influential weighted sentiment factors is extracted from the sizable raw data of over 2 millions of posts. We examine one supervised and 4 unsupervised sentiment analysis model, and use the best performed word-frequency and BiLSTM mdoel. The test result shows a similar movement between stock price change and sentiment factor. It indicates that public mood extracted from social media can in some extent represent the investors' sentiment and make a difference in stock market fluctuation when people are concentrating on a special events that can cause effect on the stock market.

The proposition of cosine net confidence in association rule mining (연관 규칙 마이닝에서의 코사인 순수 신뢰도의 제안)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.97-106
    • /
    • 2014
  • The development of big data technology was to more accurately predict diversified contemporary society and to more efficiently operate it, and to enable impossible technique in the past. This technology can be utilized in various fields such as the social science, economics, politics, cultural sector, and science technology at the national level. It is a prerequisite to find valuable information by data mining techniques in order to analyze big data. Data mining techniques associated with big data involve text mining, opinion mining, cluster analysis, association rule mining, and so on. The most widely used data mining technique is to explore association rules. This technique has been used to find the relationship between each set of items based on the association thresholds such as support, confidence, lift, similarity measures, etc.This paper proposed cosine net confidence as association thresholds, and checked the conditions of interestingness measure proposed by Piatetsky-Shapiro, and examined various characteristics. The comparative studies with basic confidence and cosine similarity, and cosine net confidence were shown by numerical example. The results showed that cosine net confidence are better than basic confidence and cosine similarity because of the relevant direction.

Building a Korean Sentiment Lexicon Using Collective Intelligence (집단지성을 이용한 한글 감성어 사전 구축)

  • An, Jungkook;Kim, Hee-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.49-67
    • /
    • 2015
  • Recently, emerging the notion of big data and social media has led us to enter data's big bang. Social networking services are widely used by people around the world, and they have become a part of major communication tools for all ages. Over the last decade, as online social networking sites become increasingly popular, companies tend to focus on advanced social media analysis for their marketing strategies. In addition to social media analysis, companies are mainly concerned about propagating of negative opinions on social networking sites such as Facebook and Twitter, as well as e-commerce sites. The effect of online word of mouth (WOM) such as product rating, product review, and product recommendations is very influential, and negative opinions have significant impact on product sales. This trend has increased researchers' attention to a natural language processing, such as a sentiment analysis. A sentiment analysis, also refers to as an opinion mining, is a process of identifying the polarity of subjective information and has been applied to various research and practical fields. However, there are obstacles lies when Korean language (Hangul) is used in a natural language processing because it is an agglutinative language with rich morphology pose problems. Therefore, there is a lack of Korean natural language processing resources such as a sentiment lexicon, and this has resulted in significant limitations for researchers and practitioners who are considering sentiment analysis. Our study builds a Korean sentiment lexicon with collective intelligence, and provides API (Application Programming Interface) service to open and share a sentiment lexicon data with the public (www.openhangul.com). For the pre-processing, we have created a Korean lexicon database with over 517,178 words and classified them into sentiment and non-sentiment words. In order to classify them, we first identified stop words which often quite likely to play a negative role in sentiment analysis and excluded them from our sentiment scoring. In general, sentiment words are nouns, adjectives, verbs, adverbs as they have sentimental expressions such as positive, neutral, and negative. On the other hands, non-sentiment words are interjection, determiner, numeral, postposition, etc. as they generally have no sentimental expressions. To build a reliable sentiment lexicon, we have adopted a concept of collective intelligence as a model for crowdsourcing. In addition, a concept of folksonomy has been implemented in the process of taxonomy to help collective intelligence. In order to make up for an inherent weakness of folksonomy, we have adopted a majority rule by building a voting system. Participants, as voters were offered three voting options to choose from positivity, negativity, and neutrality, and the voting have been conducted on one of the largest social networking sites for college students in Korea. More than 35,000 votes have been made by college students in Korea, and we keep this voting system open by maintaining the project as a perpetual study. Besides, any change in the sentiment score of words can be an important observation because it enables us to keep track of temporal changes in Korean language as a natural language. Lastly, our study offers a RESTful, JSON based API service through a web platform to make easier support for users such as researchers, companies, and developers. Finally, our study makes important contributions to both research and practice. In terms of research, our Korean sentiment lexicon plays an important role as a resource for Korean natural language processing. In terms of practice, practitioners such as managers and marketers can implement sentiment analysis effectively by using Korean sentiment lexicon we built. Moreover, our study sheds new light on the value of folksonomy by combining collective intelligence, and we also expect to give a new direction and a new start to the development of Korean natural language processing.

A MVC Framework for Visualizing Text Data (텍스트 데이터 시각화를 위한 MVC 프레임워크)

  • Choi, Kwang Sun;Jeong, Kyo Sung;Kim, Soo Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.39-58
    • /
    • 2014
  • As the importance of big data and related technologies continues to grow in the industry, it has become highlighted to visualize results of processing and analyzing big data. Visualization of data delivers people effectiveness and clarity for understanding the result of analyzing. By the way, visualization has a role as the GUI (Graphical User Interface) that supports communications between people and analysis systems. Usually to make development and maintenance easier, these GUI parts should be loosely coupled from the parts of processing and analyzing data. And also to implement a loosely coupled architecture, it is necessary to adopt design patterns such as MVC (Model-View-Controller) which is designed for minimizing coupling between UI part and data processing part. On the other hand, big data can be classified as structured data and unstructured data. The visualization of structured data is relatively easy to unstructured data. For all that, as it has been spread out that the people utilize and analyze unstructured data, they usually develop the visualization system only for each project to overcome the limitation traditional visualization system for structured data. Furthermore, for text data which covers a huge part of unstructured data, visualization of data is more difficult. It results from the complexity of technology for analyzing text data as like linguistic analysis, text mining, social network analysis, and so on. And also those technologies are not standardized. This situation makes it more difficult to reuse the visualization system of a project to other projects. We assume that the reason is lack of commonality design of visualization system considering to expanse it to other system. In our research, we suggest a common information model for visualizing text data and propose a comprehensive and reusable framework, TexVizu, for visualizing text data. At first, we survey representative researches in text visualization era. And also we identify common elements for text visualization and common patterns among various cases of its. And then we review and analyze elements and patterns with three different viewpoints as structural viewpoint, interactive viewpoint, and semantic viewpoint. And then we design an integrated model of text data which represent elements for visualization. The structural viewpoint is for identifying structural element from various text documents as like title, author, body, and so on. The interactive viewpoint is for identifying the types of relations and interactions between text documents as like post, comment, reply and so on. The semantic viewpoint is for identifying semantic elements which extracted from analyzing text data linguistically and are represented as tags for classifying types of entity as like people, place or location, time, event and so on. After then we extract and choose common requirements for visualizing text data. The requirements are categorized as four types which are structure information, content information, relation information, trend information. Each type of requirements comprised with required visualization techniques, data and goal (what to know). These requirements are common and key requirement for design a framework which keep that a visualization system are loosely coupled from data processing or analyzing system. Finally we designed a common text visualization framework, TexVizu which is reusable and expansible for various visualization projects by collaborating with various Text Data Loader and Analytical Text Data Visualizer via common interfaces as like ITextDataLoader and IATDProvider. And also TexVisu is comprised with Analytical Text Data Model, Analytical Text Data Storage and Analytical Text Data Controller. In this framework, external components are the specifications of required interfaces for collaborating with this framework. As an experiment, we also adopt this framework into two text visualization systems as like a social opinion mining system and an online news analysis system.