This paper aims to assess the feasibility of a new and less-focused type of online sociability (the watching network) as a useful information source for personalized recommendations. In this paper, we recommend scientific articles of interests by using the shared interests between target users and their watching connections. Our recommendations are based on one typical social bookmarking system, CiteULike. The watching network-based recommendations, which use a much smaller size of user data, produces suggestions that are as good as the conventional Collaborative Filtering technique. The results demonstrate that the watching network is a useful information source and a feasible foundation for information personalization. Furthermore, the watching network is substitutable for anonymous peers of the Collaborative Filtering recommendations. This study shows the expandability of social network-based recommendations to the new type of online social networks.
To upgrade home style recommendations and user satisfaction, this paper proposes a personalized and optimized recommendation algorithm for interior design style based on local social network, which includes data acquisition by three-dimensional (3D) model, home-style feature definition, and style association mining. Through the analysis of user behaviors, the user interest model is established accordingly. Combined with the location-based social network of association rule mining algorithm, the association analysis of the 3D model dataset of interior design style is carried out, so as to get relevant home-style recommendations. The experimental results show that the proposed algorithm can complete effective analysis of 3D interior home style with the recommendation accuracy of 82% and the recommendation time of 1.1 minutes, which indicates excellent application effect.
본 논문에서는 국제학술대회 참가자를 위한 개인화 된 정보추천서비스를 제안한다. 국제학술대회에서는 많은 논문들이 동시에 여러 세션으로 구성되어 발표되고 여러 연구관련 활동들이(예를 들어, 튜토리얼, 산업계토론, 공동연구논의 등) 짧은 기간 동안 이루어지므로 발표되는 논문들을 일일이 확인하고 그 발표에 참여하기가 쉽지 않다. 또한 학술대회의 정보 추천은, 기존의 영화, 책, 음악 등의 상품추천과 달리, 이미 정해진 해당 연구관련 커뮤니티가 대회 참가자들 및 발표자들을 중심으로 구성되어 있으므로 보다 명확한 소셜네트워크 기반추천 서비스가 가능하다. 본 논문에서는 각 학술대회에서 발표되는 논문들의 내용은 무엇인지, 참가자들이 어떤 논문에 관심을 가지는지, 그리고 각 참가자들이 다른 참가자들과의 맺은 소셜네트워크 등의 정보를 통해 발표에 참여할 만한 논문들을 추천하였다. 특히, 실제 운용되고 있는 국제학술대회 정보시스템, Conference Navigator를 이용하여, 여러 학술논문 관련 추천서비스를 비교 실험하였다. 기존의 Collaborative filtering 추천 알고리듬뿐만 아니라 학술대회참가자들의 소셜네트워크 기반 추천 서비스를 제공하였으며 연구결과 Cold-start 사용자들에게 특히 소셜네트워크 기반추천이 가장 좋은 결과를 보여주었다.
협업필터링은 상품을 추천하고자 하는 고객과 유사한 구매 행태를 보이는 고객들의 구매 정보를 반영하여 추천대상 고객이 아직 구매하지 않은 상품에 대한 선호도를 예측한 후 선호도가 높을 것으로 예측되는 상품을 추천해주는 시스템이다. 그러나 신규고객의 경우에는 과거 구매 이력의 부재로 선호도를 예측할 수 없어 추천이 어렵게 되는 신규고객 추천문제가 발생하게 된다. 이러한 신규고객 추천문제를 해결하기 위해 기존에 제시되었던 방법들은 추천의 정확도가 낮거나, 추천에 필요한 정보 획득이 어렵거나, 추천 전에 고객이 능동적으로 질의에 응답해야 하는 부담이 있는 등의 문제로 인하여 그 실효성이 매우 낮다. 따라서 기존의 신규고객 추천 방법의 한계를 극복할 수 있는 새로운 접근방법의 필요성이 대두되고 있다. 본 연구에서는 사회네트워크 분석에서 관계 구조적 특성을 분석하기 위해 널리 활용 되고 있는 중심성 개념을 협업필터링에 적용하여 신규고객의 이웃고객을 찾고 그 이웃고객들의 구매정보를 이용하여 신규고객에게 상품을 추천하는 방법을 제시한다. 추천 프로세스는 구매 유사도 분석, 고객 네트워크 구성, 이웃고객 형성, 신규고객 상품추천 단계로 구성된다. 제시한 추천방법의 성능을 평가하기 위하여 국내 유명 백화점 중의 하나인 H백화점의 고객 구매 데이터를 사용하여 실험하였다. 실험 결과로부터 제시한 추천방법이 기존의 신규고객 추천방법들과 비교하여 추천의 정확도는 높으면서도, 구매정보 외에 인구통계정보 등과 같은 추가 정보가 필요하지 않으며, 추천 전에 고객이 능동적으로 질의에 응답할 필요가 없는 새로운 방법임을 알 수 있었다.
International Journal of Internet, Broadcasting and Communication
/
제12권2호
/
pp.113-119
/
2020
Numerous tourist-related data produced on the Internet contain not only simple tourist information but also diverse ideas and opinions from users. In order to derive meaningful information about tourist sites from such big data, the social network analysis of tourist keywords can identify the frequency of keywords and the relationship between keywords. Thus, it is possible to make recommendations more suitable for users by utilizing the clear recommendation criteria of tourist attractions and the relationship between tourist attractions. In this paper, a recommendation system was designed based on tourist site information through big data social network analysis. Based on user personality information, the types of tourism suitable for users are classified through deep learning and the network analysis among tourist keywords is conducted to identify the relationship between tourist attractions belonging to the type of tourism. Tour information for related tourist attractions shown on SNS and blogs will be recommended through tagging.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권7호
/
pp.1868-1887
/
2024
Recommendation systems research is a subfield of information retrieval, as these systems recommend appropriate items to users during their visits. Appropriate recommendation results will help users save time searching while increasing productivity at work, travel, or shopping. The problem becomes more difficult when the items are geographical locations on the ground, as they are associated with a wealth of contextual information, such as geographical location, opening time, and sequence of related locations. Furthermore, on social networking platforms that allow users to check in or express interest when visiting a specific location, their friends receive this signal by spreading the word on that online social network. Consideration should be given to relationship data extracted from online social networking platforms, as well as their impact on the geolocation recommendation process. In this study, we compare the similarity of geographic locations based on their distance on the ground and their correlation with users who have checked in at those locations. When calculating feature embeddings for users and locations, social relationships are also considered as attention signals. The similarity value between location and correlation between users will be exploited in the overall architecture of the recommendation model, which will employ graph convolution networks to generate recommendations with high precision and recall. The proposed model is implemented and executed on popular datasets, then compared to baseline models to assess its overall effectiveness.
현대사회에서 추천 서비스는 클라이언트-서버 기반의 인터넷 서비스에서 소셜 네트워킹으로 변화되고 있다. 특히 최근에는 크라우드소싱과 소셜 네트워킹을 통하여 사용자에게 개인화 추천을 서비스하고 있다. 소셜 네트워크 기반 시스템은 메모리와 모델 기반 협력적 필터링을 이용한 추천 서비스 제공 방식과 목적에 따라 분류할 수 있다. 이에 본 논문에서는 소셜 네트워크 기반의 {사용자-연관 디자인} 행렬을 이용한 감성 디자인 추천을 제안한다. 제안하는 방법은 소셜 네트워크 기반에서 {사용자-연관 디자인} 행렬을 구성하고 메모리 기반 협력적 필터링을 이용하여 감성 디자인을 추천한다. 제안한 방법의 성능평가는 정확도와 재현율 검증을 진행한다. 정확도의 검증은 소셜 네트워크 기반의 추천 적용유무에 따른 F-measure를 사용한다.
웹 2.0을 이끌어가는 원동력이라고 할 수 있는 일반 개인 사용자의 참여와 공유는 블로그, 소셜 네트워크(Social Network), 집단지성, 소셜 북마크(Social Bookmark), 태깅(Tagging) 등의 다양한 형태로 나타나고 있다. 이 중에서 소셜 북마크는 개인이 사용하는 북마크를 웹에 추가하여 공유함으로써, 다수의 사람들이 유용하다고 생각하는 북마크에 대한 정보를 기반으로 한 다양한 서비스를 제공하는 개념이다. 딜리셔스(Delicious.com)는 소셜 북마크 서비스의 대표적인 사례라고 할 수 있으며, 북마크에 사용자들이 붙인 태그를 이용하여 검색 서비스를 제공한다. 본 논문은 북마크 검색에 대해 개인화된 검색결과를 추천하기 위하여 사용자 태그를 기반으로 하여 딜리셔스가 제공하는 북마크들의 순위를 재순위화 하는 방법론을 제안하였다. 또한 태그유사도를 기반으로 한 태그 네트워크를 이용하여 사용자의 검색어에 의미적으로 유사한 다른 태그들도 순위에 반영될 수 있도록 하였다. 그리고 실험을 통하여 딜리셔스가 제시하는 순위에 비해 본 논문에서 제안하는 시스템의 재순위화 결과가 사용자들에게 더 만족스러우며 정확성도 높음을 확인하였다.
협업필터링 추천은 다양한 분야에서 활용되고 있지만 트랜잭션 데이터의 성격에 따라 추천 성능에 현저한 차이를 보이고 있다. 기존 연구에서는 이러한 추천 성능의 차이가 나타나는 이유에 대한 설명을 구체적으로 제시하지 못하고 있고 이에 따라 추천 성능의 예측 또한 연구된 바가 없다. 본 연구는 사회네트워크분석과 인공신경망 모형을 이용하여 협업필터링 추천시스템의 성능을 예측하고자 한다. 본 연구의 목적을 달성하기 위해 국내 백화점의 트랜잭션 데이터를 기반으로 형성되는 고객간 사회 네트워크의 구조적 지표를 측정한 후 이를 기반으로 인공신경망 모형을 구축하고 검증한다. 본 연구는 협업필터링 추천 성능을 예측할 수 있는 새로운 모형을 제시하였다는 점에서 그 의의가 있으며 이를 통해 기업들의 협업필터링 추천시스템 도입에 대한 의사결정에 도움을 줄 수 있을 것으로 기대된다.
The purpose of this paper is to give some crisis communication strategies for effective cooperation and coordination among the countries in global society. Based on the theoretical discussions, in this paper, five strategic recommendations toward improving crisis communication are offered as follows; First, it is necessary that a small, dynamic team for global crisis communication function be established among the nearby countries. Second, for understanding the neighboring country's crisis situation, it is needed that the common crisis communication organizations which play an important role of disseminating accurate information and giving the collaborative efforts in each country have to be made. Third, for effective crisis management, an appropriate infrastructure that includes open and effective communication channels among different levels and across organizations must be in place. Fourth, mass communication should fulfill a variety of functions in society and provide information, interpretation of events, and its influence, etc for cooperating and coordinating the crisis management. Fifth, to acquire a correct understanding of the bordering country's crisis and calamities, intercultural education program should be established in the crisis communication system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.