• Title/Summary/Keyword: Social Network-based Recommendations

Search Result 36, Processing Time 0.023 seconds

Personalizing Information Using Users' Online Social Networks: A Case Study of CiteULike

  • Lee, Danielle
    • Journal of Information Processing Systems
    • /
    • v.11 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • This paper aims to assess the feasibility of a new and less-focused type of online sociability (the watching network) as a useful information source for personalized recommendations. In this paper, we recommend scientific articles of interests by using the shared interests between target users and their watching connections. Our recommendations are based on one typical social bookmarking system, CiteULike. The watching network-based recommendations, which use a much smaller size of user data, produces suggestions that are as good as the conventional Collaborative Filtering technique. The results demonstrate that the watching network is a useful information source and a feasible foundation for information personalization. Furthermore, the watching network is substitutable for anonymous peers of the Collaborative Filtering recommendations. This study shows the expandability of social network-based recommendations to the new type of online social networks.

Personalized Recommendation Algorithm of Interior Design Style Based on Local Social Network

  • Guohui Fan;Chen Guo
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.576-589
    • /
    • 2023
  • To upgrade home style recommendations and user satisfaction, this paper proposes a personalized and optimized recommendation algorithm for interior design style based on local social network, which includes data acquisition by three-dimensional (3D) model, home-style feature definition, and style association mining. Through the analysis of user behaviors, the user interest model is established accordingly. Combined with the location-based social network of association rule mining algorithm, the association analysis of the 3D model dataset of interior design style is carried out, so as to get relevant home-style recommendations. The experimental results show that the proposed algorithm can complete effective analysis of 3D interior home style with the recommendation accuracy of 82% and the recommendation time of 1.1 minutes, which indicates excellent application effect.

Recommending Talks at International Research Conferences (국제학술대회 참가자들을 위한 정보추천 서비스)

  • Lee, Danielle H.
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.13-34
    • /
    • 2012
  • The Paper Explores The Problem Of Recommending Talks To Attend At International Research Conferences. When Researchers Participate In Conferences, Finding Interesting Talks To Attend Is A Real Challenge. Given That Several Presentation Sessions And Social Activities Are Typically Held At A Time, And There Is Little Time To Analyze All Alternatives, It Is Easy To Miss Important Talks. In Addition, Compared With Recommendations Of Products Such As Movies, Books, Music, Etc. The Recipients Of Talk Recommendations (i.e. Conference Attendees) Already Formed Their Own Research Community On The Center Of The Conference Topics. Hence, Recommending Conference Talks Contains Highly Social Context. This Study Suggests That This Domain Would Be Suitable For Social Network-Based Recommendations. In Order To Find Out The Most Effective Recommendation Approach, Three Sources Of Information Were Explored For Talk Recommendation-Whateach Talk Is About (Content), Who Scheduled The Talks (Collaborative), And How The Users Are Connected Socially (Social). Using These Three Sources Of Information, This Paper Examined Several Direct And Hybrid Recommendation Algorithms To Help Users Find Interesting Talks More Easily. Using A Dataset Of A Conference Scheduling System, Conference Navigator, Multiple Approaches Ranging From Classic Content-Based And Collaborative Filtering Recommendations To Social Network-Based Recommendations Were Compared. As The Result, For Cold-Start Users Who Have Insufficient Number Of Items To Express Their Preferences, The Recommendations Based On Their Social Networks Generated The Best Suggestions.

Social Network : A Novel Approach to New Customer Recommendations (사회연결망 : 신규고객 추천문제의 새로운 접근법)

  • Park, Jong-Hak;Cho, Yoon-Ho;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.123-140
    • /
    • 2009
  • Collaborative filtering recommends products using customers' preferences, so it cannot recommend products to the new customer who has no preference information. This paper proposes a novel approach to new customer recommendations using the social network analysis which is used to search relationships among social entities such as genetics network, traffic network, organization network, etc. The proposed recommendation method identifies customers most likely to be neighbors to the new customer using the centrality theory in social network analysis and recommends products those customers have liked in the past. The procedure of our method is divided into four phases : purchase similarity analysis, social network construction, centrality-based neighborhood formation, and recommendation generation. To evaluate the effectiveness of our approach, we have conducted several experiments using a data set from a department store in Korea. Our method was compared with the best-seller-based method that uses the best-seller list to generate recommendations for the new customer. The experimental results show that our approach significantly outperforms the best-seller-based method as measured by F1-measure.

  • PDF

Deep Learning-based Tourism Recommendation System using Social Network Analysis

  • Jeong, Chi-Seo;Ryu, Ki-Hwan;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.113-119
    • /
    • 2020
  • Numerous tourist-related data produced on the Internet contain not only simple tourist information but also diverse ideas and opinions from users. In order to derive meaningful information about tourist sites from such big data, the social network analysis of tourist keywords can identify the frequency of keywords and the relationship between keywords. Thus, it is possible to make recommendations more suitable for users by utilizing the clear recommendation criteria of tourist attractions and the relationship between tourist attractions. In this paper, a recommendation system was designed based on tourist site information through big data social network analysis. Based on user personality information, the types of tourism suitable for users are classified through deep learning and the network analysis among tourist keywords is conducted to identify the relationship between tourist attractions belonging to the type of tourism. Tour information for related tourist attractions shown on SNS and blogs will be recommended through tagging.

Collaborative filtering by graph convolution network in location-based recommendation system

  • Tin T. Tran;Vaclav Snasel;Thuan Q. Nguyen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1868-1887
    • /
    • 2024
  • Recommendation systems research is a subfield of information retrieval, as these systems recommend appropriate items to users during their visits. Appropriate recommendation results will help users save time searching while increasing productivity at work, travel, or shopping. The problem becomes more difficult when the items are geographical locations on the ground, as they are associated with a wealth of contextual information, such as geographical location, opening time, and sequence of related locations. Furthermore, on social networking platforms that allow users to check in or express interest when visiting a specific location, their friends receive this signal by spreading the word on that online social network. Consideration should be given to relationship data extracted from online social networking platforms, as well as their impact on the geolocation recommendation process. In this study, we compare the similarity of geographic locations based on their distance on the ground and their correlation with users who have checked in at those locations. When calculating feature embeddings for users and locations, social relationships are also considered as attention signals. The similarity value between location and correlation between users will be exploited in the overall architecture of the recommendation model, which will employ graph convolution networks to generate recommendations with high precision and recall. The proposed model is implemented and executed on popular datasets, then compared to baseline models to assess its overall effectiveness.

Social Network based Sensibility Design Recommendation using {User - Associative Design} Matrix (소셜 네트워크 기반의 {사용자 - 연관 디자인} 행렬을 이용한 감성 디자인 추천)

  • Jung, Eun-Jin;Kim, Joo-Chang;Jung, Hoill;Chung, Kyungyong
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.313-318
    • /
    • 2016
  • The recommendation service is changing from client-server based internet service to social networking. Especially in recent years, it is serving recommendations with personalization to users through crowdsourcing and social networking. The social networking based systems can be classified depending on methods of providing recommendation services and purposes by using memory and model based collaborative filtering. In this study, we proposed the social network based sensibility design recommendation using associative user. The proposed method makes {user - associative design} matrix through the social network and recommends sensibility design using the memory based collaborative filtering. For the performance evaluation of the proposed method, recall and precision verification are conducted. F-measure based on recommendation of social networking is used for the verification of accuracy.

Personalized Bookmark Recommendation System Using Tag Network (태그 네트워크를 이용한 개인화 북마크 추천시스템)

  • Eom, Tae-Young;Kim, Woo-Ju;Park, Sang-Un
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.4
    • /
    • pp.181-195
    • /
    • 2010
  • The participation and share between personal users are the driving force of Web 2.0, and easily found in blog, social network, collective intelligence, social bookmarking and tagging. Among those applications, the social bookmarking lets Internet users to store bookmarks online and share them, and provides various services based on shared bookmarks which people think important.Delicious.com is the representative site of social bookmarking services, and provides a bookmark search service by using tags which users attach to the bookmarks. Our paper suggests a method re-ranking the ranks from Delicious.com based on user tags in order to provide personalized bookmark recommendations. Moreover, a method to consider bookmarks which have tags not directly related to the user query keywords is suggested by using tag network based on Jaccard similarity coefficient. The performance of suggested system is verified with experiments that compare the ranks by Delicious.com with new ranks of our system.

Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network (사회연결망분석과 인공신경망을 이용한 추천시스템 성능 예측)

  • Cho, Yoon-Ho;Kim, In-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.159-172
    • /
    • 2010
  • The recommender system is one of the possible solutions to assist customers in finding the items they would like to purchase. To date, a variety of recommendation techniques have been developed. One of the most successful recommendation techniques is Collaborative Filtering (CF) that has been used in a number of different applications such as recommending Web pages, movies, music, articles and products. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. Broadly, there are memory-based CF algorithms, model-based CF algorithms, and hybrid CF algorithms which combine CF with content-based techniques or other recommender systems. While many researchers have focused their efforts in improving CF performance, the theoretical justification of CF algorithms is lacking. That is, we do not know many things about how CF is done. Furthermore, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting the performances of CF algorithms in advance is practically important and needed. In this study, we propose an efficient approach to predict the performance of CF. Social Network Analysis (SNA) and Artificial Neural Network (ANN) are applied to develop our prediction model. CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. SNA facilitates an exploration of the topological properties of the network structure that are implicit in data for CF recommendations. An ANN model is developed through an analysis of network topology, such as network density, inclusiveness, clustering coefficient, network centralization, and Krackhardt's efficiency. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Inclusiveness refers to the number of nodes which are included within the various connected parts of the social network. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. Krackhardt's efficiency characterizes how dense the social network is beyond that barely needed to keep the social group even indirectly connected to one another. We use these social network measures as input variables of the ANN model. As an output variable, we use the recommendation accuracy measured by F1-measure. In order to evaluate the effectiveness of the ANN model, sales transaction data from H department store, one of the well-known department stores in Korea, was used. Total 396 experimental samples were gathered, and we used 40%, 40%, and 20% of them, for training, test, and validation, respectively. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. The input variable measuring process consists of following three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used Net Miner 3 and UCINET 6.0 for SNA, and Clementine 11.1 for ANN modeling. The experiments reported that the ANN model has 92.61% estimated accuracy and 0.0049 RMSE. Thus, we can know that our prediction model helps decide whether CF is useful for a given application with certain data characteristics.

Crisis Communication Strategy for Responding the Disaster in North-East Asia: Enhancing the Cooperative Disaster Management Network and the Social Network

  • Lee, Jae-Eun
    • International Journal of Contents
    • /
    • v.8 no.3
    • /
    • pp.64-70
    • /
    • 2012
  • The purpose of this paper is to give some crisis communication strategies for effective cooperation and coordination among the countries in global society. Based on the theoretical discussions, in this paper, five strategic recommendations toward improving crisis communication are offered as follows; First, it is necessary that a small, dynamic team for global crisis communication function be established among the nearby countries. Second, for understanding the neighboring country's crisis situation, it is needed that the common crisis communication organizations which play an important role of disseminating accurate information and giving the collaborative efforts in each country have to be made. Third, for effective crisis management, an appropriate infrastructure that includes open and effective communication channels among different levels and across organizations must be in place. Fourth, mass communication should fulfill a variety of functions in society and provide information, interpretation of events, and its influence, etc for cooperating and coordinating the crisis management. Fifth, to acquire a correct understanding of the bordering country's crisis and calamities, intercultural education program should be established in the crisis communication system.