Journal of the Korea Society of Computer and Information
/
v.28
no.1
/
pp.189-199
/
2023
This study aimed to identify the development direction of Arduino-based boards relating to artificial intelligence based on social awareness identified using big data analytical methods. For the purpose, big data were extracted through the Textom website, focusing on keywords that included 'Arduino + artificial intelligence' and 'Arduino + AI', and these data were refined and analyzed using the Textom website and the UNICET program. In this study, big data analyses, including frequency analysis, TF-IDF analysis, Degree Centrality analysis, N-gram analysis, and CONCOR analysis, were performed. The analyses' results confirmed that keywords relating to education and coding education, keywords relating to making and experience based on Arduino, and keywords relating to programs were the main keywords used in Arduino- and artificial intelligence-related Internet documents, and clusters were formed based on these keywords confirmed. The social awareness of Arduino and artificial intelligence was evaluated, and the direction of board development was identified based on this social awareness. This study is meaningful in that it identified various factors of board development based on the general public's social awareness, which was evaluated using a big data analysis method. This study may serve as a point of reference for future researchers or developers wishing to understand user needs using big data analysis methods.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.8
/
pp.2571-2586
/
2022
The rapid popularity of government social media has generated huge amounts of text data, and the analysis of these data has gradually become the focus of digital government research. This study uses Python language to analyze the big data of the Chinese provincial government Weibo. First, this study uses a web crawler approach to collect and statistically describe over 360,000 data from 31 provincial government microblogs in China, covering the period from January 2018 to April 2022. Second, a word separation engine is constructed and these text data are analyzed using word cloud word frequencies as well as semantic relationships. Finally, the text data were analyzed for sentiment using natural language processing methods, and the text topics were studied using LDA algorithm. The results of this study show that, first, the number and scale of posts on the Chinese government Weibo have grown rapidly. Second, government Weibo has certain social attributes, and the epidemics, people's livelihood, and services have become the focus of government Weibo. Third, the contents of government Weibo account for more than 30% of negative sentiments. The classified topics show that the epidemics and epidemic prevention and control overshadowed the other topics, which inhibits the diversification of government Weibo.
Social Media transformed the mass media based information traffic, and it has become a key resource for finding value in enterprises and public institutions. Particularly, in regards to disaster management, the necessity for public participation policy development through the use of social media is emphasized. National Disaster Management Research Institute developed the Social Big Board, which is a system that monitors social Big Data in real time for purposes of implementing social media disaster management. Social Big Board collects a daily average of 36 million tweets in Korean in real time and automatically filters disaster safety related tweets. The filtered tweets are then automatically categorized into 71 disaster safety types. This real time tweet monitoring system provides various information and insights based on the tweets, such as disaster issues, tweet frequency by region, original tweets, etc. The purpose of using this system is to take advantage of the potential benefits of social media in relations to disaster management. It is a first step towards disaster management that communicates with the people that allows us to hear the voice of the people concerning disaster issues and also understand their emotions at the same time. In this paper, Korean language text mining based Social Big Board will be briefly introduced, and disaster issue detection model, which is key algorithms, will be described. Disaster issues are divided into two categories: potential issues, which refers to abnormal signs prior to disaster events, and occurrence issues, which is a notification of disaster events. The detection models of these two categories are defined and the performance of the models are compared and evaluated.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.2
/
pp.435-442
/
2017
Our anxiousness has risen for recent increase in unpredicatable disaster. Accordingly, for the future society's preventing measure in advance against current considerable disasters due to societal crisis, we need to prepare secure measure ahead. Hence, we need to recognize the significance of governmental role and the value of Big Data application as ICT developed country in order to manage social crisis all the time. This manuscript analyzes human anxiety from listed disasters and describes that our government seeks new way to utilize Big Data in public in order to visualize Big Data related issues and its significance and urgency. Also, it suggests domestic/international application trend of Big Data's public sector with new practical approach to Big Data. Then, it emphasizes e-Gov's role for its Big Data application and suggests policies implying governmental use of Big Data for social crisis management by case-studying disaster measures against unpredictable crisis.
Kim, Byung-Man;Kim, Jung-In;Lee, Young-Woo;Lee, Kang-Hoon
Journal of Convergence for Information Technology
/
v.12
no.2
/
pp.37-46
/
2022
The purpose of this study is to provide basic data onto preparing soft landing plan of future education policy by exploring direction of future education for the common good using big data and keyword network analysis. Based on the big data provided by Textom, data was collected under the keyword 'future education + common Good' and then keyword network analysis was performed. As a result of the research, it was found that 'common good', 'social', 'KAIST future warning', 'measures', 'research', 'future education', 'politics' were common keywords in the social awareness of future education for the common good. The results of this study suggest that the social awareness of future education for the common good is related to factors related to human, physical environment, social response, academic interest, education policy, education plan, and related variables, It was closely related. Based on these results, we suggested implications for the support for the preparation of a soft landing plan of future education for the common good.
Han, Yoonsun;Kim, Hayoung;Song, Juyoung;Song, Tae Min
The Journal of the Korea Contents Association
/
v.19
no.6
/
pp.10-23
/
2019
Although social big data can provide a multi-faceted perspective on school bullying experiences among children and adolescents, the complexity and variety of unstructured text presents a challenge for systematic collection and analysis of the data. Development of an ontology, which identifies key terms and their intricate relationships, is crucial for extracting key concepts and effectively collecting data. The current study elaborated on the definition of an ontology, carefully described the 7 stage development process, and applied the ontology for collecting and analyzing school bullying social big data. As a result, approximately 2,400 key terms were extracted in top-, middle-, and lower-level categories, concerning domains of participants, causes, types, location, region, and intervention. The study contributes to the literature by explaining the ontology development process and proposing a novel alternative research model that uses social big data in school bullying research. Findings from this ontology study may provide a basis for social big data research. Practical implications of this study lie in not only helping to understand the experience of school bullying participants, but also in offering a macro perspective on school bullying as a social phenomenon.
Journal of Information Technology Applications and Management
/
v.28
no.1
/
pp.13-31
/
2021
The purpose of this study is to find the factors that influence big data characteristics on decision satisfaction and utilization behavior, analyze the extent of their influence, and derive differences from existing studies. To summarize the results of this study, First, the study found that among the three categories that classify the characteristics of big data, qualitative attributes such as representation, purpose, interpretability, and innovation in the value innovation category greatly enhance decision confidence and decision effectiveness of decision makers who make decisions using big data. Second, the study found that, among the three categories that classify the characteristics of big data, the individuality properties belonging to the social impact category improve decision confidence and decision effectiveness of decision makers who use big data to make decisions. However, collectivity and bias characteristics have been shown to increase decision confidence, but not the effectiveness of decision making. Third, the study found that among the three categories that classify the characteristics of big data, the attributes of inclusiveness, realism, etc. in the integrity category greatly improve decision confidence and decision effectiveness of decision makers who make decisions using big data. Fourth, it was analyzed that using big data in organizational decision making has a positive impact on the behavior of big data users when the decision-making confidence and finally, decision-making effect of decision-makers increases.
The purpose of this study was to compare the Starbucks in South Korea with Starbucks in U.S.A through the semantic network analysis of big data by collecting online data with SCTM(Smart Crawling & Text Mining) program which was developed by big data research institute at Kyungsung University, a data collecting and processing program. The data collection period was from January 1st 2014 to December 7th 2017, and packaged Netdraw along with UCINET 6.0 were utilized for data analysis and visualization. After performing CONCOR(convergence of iterated correlation) analysis and centrality analysis, this study illustrated the current characteristics of Starbucks for Korea and U.S.A reflected by the social network and the differences between Korea and U.S.A. Since the Starbucks was greatly developed, especially in Korea. this study also was supposed to provide significant and social-network oriented suggestions for Starbucks USA, Starbucks Korea and also the whole coffee industry. Also this study revealed that big data analytics can generate new insights into variables that have been extensively studied in existing hospitality literature. In addition, implications for theory and practice as well as directions for future research are discussed.
It has been reported that large amounts of information on agri-foods were delivered to consumers through television and social networks, and the information may influence consumers' behavior. The purpose of this paper was first to analyze relations of social network service and broadcasting program on paprika consumption in the aspect of amounts to purchase and identify potential factors that can promote paprika consumption; second, to develop prediction models of paprika consumption by using structured and unstructured big data. By using data 2010-2017, cross-correlation and time-series prediction algorithms (autoregressive exogenous model and vector error correction model), statistically significant correlations between paprika consumption and television programs/shows and blogs mentioning paprika and diet were identified with lagged times. When paprika and diet related data were added for prediction, these data improved the model predictability. This is the first report to predict paprika consumption by using structured and unstructured data.
Ham, Young-Jin;Ahn, Chang-Won;Kim, Ki-Ho;Park, Gyu-Beom;Kim, Kyoung-June;Lee, Dae-Young;Park, Sun-Mi
Journal of Digital Convergence
/
v.12
no.8
/
pp.49-60
/
2014
The primary purpose of this paper is to find out what issues are important in the Social Security sector, and then, through AHP methodology, this study analyzes what kind of big data methodologies and projects can be implemented to solves these issues. To the aim, this paper first confirmed 8 big data projects from reviewing all issues in the Social Security sector such as administrative works and social policies. After the result of pairwise comparison, policy validity is most important factors rather then effectiveness and practicability. With regard to the priorities among sub-big data projects, the project about preventing improper recipients has come out the most important project in terms of validity, effectiveness and practicability. And the results showed that the project about outreaching and reducing a blind spot on the welfare sector is weighed as a significant project. The results of this paper, in particular 8 sub-big data projects, will be useful to anyone who is interested in using big data and its methodologies for the social welfare sector.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.