Journal of the Korea Society of Computer and Information
/
v.26
no.8
/
pp.55-63
/
2021
Since social big data often includes new words or proper nouns, statistical morphological analysis methods have been widely used to process them properly which are based on the frequency of occurrence of each word. However, these methods do not properly recognize compound nouns, and thus have a problem in that the accuracy of keyword extraction is lowered. This paper presents a method to extract compound nouns in keyword analysis of social big data. The proposed method creates a candidate group of compound nouns by combining the words obtained through the morphological analysis step, and extracts compound nouns by examining their frequency of appearance in a given review. Two algorithms have been proposed according to the method of constructing the candidate group, and the performance of each algorithm is expressed and compared with formulas. The comparison result is verified through experiments on real data collected online, where the results also show that the proposed method is suitable for real-time processing.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.6
/
pp.1996-2011
/
2021
To understand a trend is to explore the intricate process of how something or a particular situation is constantly changing or developing in a certain direction. This exploration is about observing and describing an unknown field of knowledge, not testing theories or models with a preconceived hypothesis. The purpose is to gain knowledge we did not expect and to recognize the associations among the elements that were suspected or not. This generally requires examining a massive amount of data to find information that could be transformed into meaningful knowledge. That is, looking through the lens of big-data analytics with an inductive reasoning approach will help expand our understanding of the complex nature of a trend. The current study explored the trend of well-being in South Korea using big-data analytic techniques to discover hidden search patterns, associative rules, and keyword signals. Thereafter, a theory was developed based on inductive reasoning - namely the hook, upward push, and downward pull to elucidate a holistic picture of how big-data implications alongside social phenomena may have influenced the well-being trend.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.14
no.3
/
pp.193-200
/
2021
Recently, posts and opinions on tourist attractions are actively shared on social media. These social big data provide meaningful information to identify objective images of tourist destinations recognized by consumers. Therefore, an in-depth understanding of the tourist image is possible by analyzing these big data on tourism. The study is to analyze destination images in Gangwon-do using big data from social media. It is wanted to understand destination images in Gangwon-do using semantic network analysis and then provided suggestions on how to enhance image to secure differentiated competitiveness as a destination for tourists. According to the frequency analysis results, as tourism in Gangwon-do, Sokcho, Gangneung, and Yangyang were mentioned at a high level in that order, and the purpose of travel was restaurant tour, gourmet food, family trip, vacation, and experience. In particular, it was found that they preferred day trips, weekends, and experiences. Four suggestions were made based on the results. First, it is necessary to develop various types of hotels, accommodation facilities and experience-oriented tour packages. Second, it is necessary to develop a day-to-day travel package that utilizes proximity to the Seoul metropolitan area. Third, it is necessary to promote traditional restaurants and local food. Finally, it is necessary to develop tourist package suitable for healing and family travel. Through this research, the destination image of Gangwon-do was identified and a tourism marketing strategy was presented to improve competitiveness. It also provided a theoretical basis for the use of the big data of tourism consumers in the field of tourism business.
The purpose of this study is to identify the social perception characteristics of young children with disabilities over the past decade. For this purpose, Textom, an Internet-based big data analysis system was used to collect data related to young children with disabilities posted on social media. 50 keywords were selected in the order of high frequency through the data cleaning process. For semantic network analysis, centrality analysis and CONCOR analysis were performed with UCINET6, and the analyzed data were visualized using NetDraw. As a result, the keywords such as 'education, needs, parents, and inclusion' ranked high in frequency, degree, and eigenvector centrality. In addition, the keywords of 'parent, teacher, problem, program, and counseling' ranked high in betweenness centrality. In CONCOR analysis, four clusters were formed centered on the keywords of 'disabilities, young child, diagnosis, and programs'. Based on these research results, the topics on social perception of young children with disabilities were investigated, and implications for each topic were discussed.
Purposes: The purpose of this study is to analyze the issue of interest in patient medical service of small and medium hospitals using big data. Methods: The method of this study was implemented by data mining and social network using SNS big data. The analysis tool were extracted key keywords and analyzed correlation by using Textom, Ucinet6 and NetDraw program. Findings: In the results of frequency, the network-centered and closeness centrality analysis, It was shown that the government center is interested in the major explanations and evaluations of the technology, information, security, safety, cost and problems of small and medium hospitals, coping with infections, and actual involvement in bank settlement. And, were extracted care for disabilities such as pediatrics, dentistry, obstetrics and gynecology, dementia, nursing, the elderly, and rehabilitation. Practical Implications: Future studies will be more useful if analyzed the needs of customers for medical services in the metropolitan area and provinces may be different in the small and medium hospitals to be studied, further classification studies.
Journal of Korean Society of Archives and Records Management
/
v.21
no.4
/
pp.1-18
/
2021
Today, record management has become more important in management as records generated from administrative work and data production have increased significantly, and the development of information and communication technology, the working environment, and the size and various functions of the government have expanded. It is explained as an example in connection with the concept of public records with the characteristics of big data and big data characteristics. Social, Technological, Economical, Environmental and Political (STEEP) analysis was conducted to examine such areas according to the big data generation environment. The appropriateness and necessity of applying big data technology in the field of public record management were identified, and the top priority applicable framework for public record management work was schematized, and business implications were presented. First, a new organization, additional research, and attempts are needed to apply big data analysis technology to public record management procedures and standards and to record management experts. Second, it is necessary to train record management specialists with "big data analysis qualifications" related to integrated thinking so that unstructured and hidden patterns can be found in a large amount of data. Third, after self-learning by combining big data technology and artificial intelligence in the field of public records, the context should be analyzed, and the social phenomena and environment of public institutions should be analyzed and predicted.
Purpose: This study measures the influence of facilitating conditions on employees' attitudes towards the adoption of big data analytics by selected medical aid organizations in Durban. In the health care sector, there are various sources of big data such as patients' medical records, medical examination results, and pharmacy prescriptions. Several organizations take the benefits of big data to improve their performance and productivity. Research design, data, and methodology: A survey research strategy was conducted on some selected medical aid organizations. A non-probability sampling and the purposive sampling technique were adopted in this study. The collected data was analysed using version 23 of Statistical Package for Social Science (SPSS) Results: the results show that the "facilitating conditions" have a positive influence on employees' attitudes in the adoption of big data analytics Conclusions: The findings of this study provide empirical and scientific contributions of the facilitating conditions issues regarding employee attitudes toward big data analytics adoption. The findings of this study will add to the body of knowledge in this field and raise awareness, which will spur further research, particularly in developing countries.
The topic of big data has gained attention from the industry and the academics, because of the revitalization of social network services. The purpose of this study is to analyze the application cases of big data according to the categories of U-City services. The result from this study is that inside and unstructured information is more applied than outside and structured information in order to generate big data.
International Journal of Computer Science & Network Security
/
v.21
no.7
/
pp.305-316
/
2021
The objective is to recognize the better opportunities from targeted reveal advertising, to show a banner ad to the consumer of online who is most expected to obtain a preferred action like signing up for a newsletter or buying a product. Discovering the most excellent commercial impression, it means the chance to exhibit an advertisement to a consumer needs the capability to calculate the probability that the consumer who perceives the advertisement on the users browser will acquire an accomplishment, that is the consumer will convert. On the other hand, conversion possibility assessment is a demanding process since there is tremendous data growth across different information dimensions and the adaptation event occurs infrequently. Retailers and manufacturers extensively employ the retail services from internet as part of a multichannel distribution and promotion strategy. The rate at which web site visitors transfer to consumers is low for online retail, out coming in high customer acquisition expenses. Approximately 96 percent of web site users concluded exclusive of no shopper purchase[1].This category of conversion rate is collected from the advertising of social media sites and pages that dataset must be estimating and assessing with the concept of big data clustering, which is used to group the particular age group of people along with their behavior. This makes to identify the proper consumer of the production which leads to improve the profitability of the concern.
International Journal of Advanced Culture Technology
/
v.8
no.3
/
pp.325-333
/
2020
In the past, eating outside was usually the purpose of eating. However, it has recently expanded into a restaurant culture market. In particular, a dessert culture is being established where people can talk and enjoy. Each consumer has a different tendency to buy chocolate such as health, taste, and atmosphere. Therefore, it is time to recommend chocolate according to consumers' tendency to eat out. In this paper, we propose a chocolate recommendation application based on the tendency to eat out using data on social networks. To collect keyword-based chocolate information, Textom is used as a text mining big data analysis solution.Text mining analysis and related topics are extracted and modeled. Because to shorten the time to recommend chocolate to users. In addition, research on the propensity of eating out is based on prior research. Finally, it implements hybrid app base.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.