• 제목/요약/키워드: Soccer Videos

검색결과 18건 처리시간 0.024초

웹에서 축출된 정보를 이용한 축구 경기의 시맨틱 인덱싱 (Semantic Indexing for Soccer Videos Using Web-Extracted Information)

  • ;김명훈;설상훈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.41-45
    • /
    • 2007
  • The rapid growing of video content production leads to the necessity of developing more complex indexing systems in order to efficiently allow searching, retrieval and presentation of the desired segments of videos. This paper presents a method for indexing soccer video through automatic extraction of information from internet. The proposed paper defines a metadata structure to formally represent the knowledge of soccer matches and provides an automatic method to extract semantic information from web-sites. This approach improves the capability to extract more reliable and richer semantic Information for soccer videos. Experimental results demonstrate that the proposed method provides an efficient performance.

  • PDF

축구 동영상에서의 장면 구조 분석에 기반한 자동적인 하이라이트 장면 검출 (Automatic Detection of Highlights in Soccer videos based on analysis of scene structure)

  • 박기태;문영식
    • 정보처리학회논문지B
    • /
    • 제14B권1호
    • /
    • pp.1-4
    • /
    • 2007
  • 본 논문에서는 축구 동영상으로부터 자동적으로 하이라이트 장면들을 검출하는 방법을 제안한다. 축구 동영상에서 하이라이트 장면들은 슈팅 장면들이나 골 장면들로 정의 될 수 있다. 우리는 축구 동영상에 대한 구조적 분석을 통해서 일반적으로 골 포스트(goal posts) 영역 주위에서 하이라이트 장면들이 나타나는 것과 하이라이트 장면 이후에는 TV 카메라가 축구 선수들이나 관중석을 확대해서 보여주는 것을 확인할 수 있었다. 본 논문에서 축구 동영상으로부터 하이라이트 장면들을 검출하기 위한 과정은 세 단계로 구성된다. 첫 번째 단계는 통계적인 문턱치(statistical threshold)를 이용한 그라운드(playing field) 영역을 추출한다. 두 번째 단계는 골 포스트를 찾기 위해서 그라운드 영역과 그라운드가 아닌 영역들의 경계선 부분을 검출한다. 그리고 마지막 단계에서는 축구 선수나 관객들의 확대 장면을 검출하기 위해서 그라운드가 아닌 영역들에 대해서 connected component labeling 기법을 적용하여 한 장면 내에서 그라운드가 아닌 영역들의 비율을 계산한다. 본 논문에서는 하이라이트 장면 검출에 대한 성능을 평가하기 위하여 정확률(precision)과 재현율(recall)을 사용하고, 실험을 통하여 제안된 방법이 정확률 95.2%, 재현율 854%로 축구 동영상에서 하이라이트 장면을 효과적으로 검출할 수 있음을 확인하였다.

축구 동영상의 배경 분리 정확도 향상을 위한 수학적 모폴로지 연산자들의 정량적 비교 평가에 관한 연구 (Objective Assessment of Mathematical Morphology Operators to Improve the Accuracy of Background Subtraction for Soccer Videos: An Experimental Comparative Study)

  • 정찬호
    • 한국통신학회논문지
    • /
    • 제41권12호
    • /
    • pp.1752-1755
    • /
    • 2016
  • 본 논문에서는 "축구 동영상"의 배경 분리 정확도 향상을 위한 "최적의" 수학적 모폴로지 연산자를 결정하기 위하여 정량적인 비교 평가 연구를 수행하였다. 이를 위해 본 논문에서는 여섯 가지 서로 다른 수학적 모폴로지 연산자를 동일한 실험 환경에서 비교 평가하였다. F-measure를 이용하여 평가한 결과 복구에 의한 닫기-복구에 의한 열기 연산자가 최적의 연산자임을 확인하였다. 본 논문에서 제시된 정량적 비교 평가 결과는 지능형 축구 동영상 분석 시스템 개발을 위해 배경 분리 기술을 이용하거나 축구 동영상에 특화된 배경 분리 기술을 연구하고자 하는 연구자 및 개발자들에게 실질적인 도움이 될 것으로 판단된다.

Full-HD급 축구 동영상의 배경 분리에서 영상 다운 샘플링이 배경 분리 성능에 미치는 영향에 관한 연구 (Impact of Image Downsampling on the Performance of Background Subtraction in Full-HD Soccer Videos)

  • 정찬호
    • 한국통신학회논문지
    • /
    • 제42권1호
    • /
    • pp.46-49
    • /
    • 2017
  • 본 논문에서는 "Full-HD급($1920{\times}1080$) 축구 동영상" 분석을 위해 필수적인 "배경 분리"에서 "영상 다운 샘플링"이 배경 분리 성능에 미치는 영향에 대해 정량적으로 분석 및 고찰한다. 이를 위해 본 논문에서는 배경 분리 정확도 뿐만 아니라 배경 분리 속도 관점에서 영상 다운 샘플링이 미치는 영향을 평가하였다. 또한 실험의 신뢰성을 높이기 위하여 두 가지 서로 다른 배경 분리 알고리즘을 이용하였다. 정량적인 비교 평가를 위해 F-measure 및 FPS(frames per second)를 이용하였다. 본 논문에서 제시된 정량적인 분석 결과는 실시간 지능형 축구 동영상 분석 시스템 개발을 위해 고속 배경 분리 기술을 연구하고자 하는 연구자 및 개발자들에게 유용한 벤치마크가 될 것으로 예상된다.

Exploring Charity Drive Content on YouTube: Focus on Shoot for Love

  • Han, Sukhee
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.88-93
    • /
    • 2019
  • This study explores one of charity drive contents on YouTube channel. Due to the advance of science and technology, ordinary people come to make their own video content online, usually via YouTube. YouTube becomes number one online video storage/streaming platform, and many people upload their own video and they get attention and fame. This study analyzes various aspects of Shoot for Love, soccer-based charity drive videos shown on YouTube channel created in South Korea. Unlike popular videos in YouTube, Shoot for Love centers on charity by casting popular soccer players and celebrities. Especially, this study researches 1) Components 2) Traits of Components 3) Contents of Components in Shoot for Love. Throughout this, it not only analyzes unique aspects of Shoot for Love that show how and why YouTube content matters, but also suggest plausible methods to drive charity and institution are suggested that appeal to the public.

Analyzing How English Premier League Teams Utilize YouTube Channel

  • Han, Sukhee
    • International journal of advanced smart convergence
    • /
    • 제9권3호
    • /
    • pp.28-35
    • /
    • 2020
  • YouTube has been gaining popularity all around the world. A lot of companies have created their own YouTube channels to leverage them in diverse ways; they upload commercial videos, show people user reviews, and conduct promotions with their products. Sports clubs are no exception; they upload diverse videos to gain popularity and to interact with their fans. This study analyzes how the English Premier League (EPL) clubs leverage their YouTube channel as soccer (football in European nations) players. YouTube activities of 20 clubs during the 2019/2020 Season are investigated. After careful consideration, we decide to examine two factors of the respective channel of the YouTube: 1) Popularity (the number of views and subscribers) 2) Contents of videos (e.g. interviews and highlight scenes). The study followingly inspects the benefits of utilizing YouTube channels and of direct communication between sports clubs and fans in online settings.

단일 시점 축구 비디오의 3차원 영상 변환을 위한 깊이지도 생성 방법 (2D-to-3D Stereoscopic conversion: Depth estimation in monoscopic soccer videos)

  • 고재승;김영우;정용주;김창익
    • 방송공학회논문지
    • /
    • 제13권4호
    • /
    • pp.427-439
    • /
    • 2008
  • 본 논문에서는 일반 단일 시점의 축구 비디오를 스테레오스코픽 영상으로 변환하는 방법을 제안한다. 축구 비디오 분석 과정을 통하여 축구 비디오를 일정한 종류의 샷으로 분류하고, 분류된 샷 종류에 따른 깊이지도 생성 방법을 제안한다. 원거리 샷의 경우에는 운동장 영역 추출을 통하여 운동장 영역에 깊이기도 (Depth Map)을 생성하는 방법을 제안한다. 그리고 비 원거리 샷의 경우, 운동장 영역 블록 수와, 간단한 피부색 발견 알고리즘을 통해 생성한 스킨 블록의 수에 따라 다시 3가지로 샷을 분류하고, 각 종류의 샷에 따른 깊이지도 생성 방식 1) 오브젝트 영역 추출을 통한 깊이지도 생성, 2) 스킨 블록을 이용한 전경 영역 추출과 가우시안 함수를 이용한 깊이기도 생성, 그리고 3) 스킨블록이 없는 상황에서의 깊이기도 생성 방법을 제안한다. 제안한 방법을 통하여 생성한 깊이 지도를 이용하여, 스테레오스코픽 영상을 생성하는 방법을 소개하고, 생성한 실험영상을 결과로 제공한다. 그리고 주관적 깊이감 품질 평가를 통해서, 제안된 방법을 통해 생성된 영상이 원본 영상에 비해 깊이감이 향상됨을 증명한다.

동적 베이지안 네트워크를 이용한 다중 카메라기반 축구 비디오 요약 (Summarization of Soccer Video based on Multiple Cameras Using Dynamic Bayesian Network)

  • 민준기;박한샘;조성배
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.567-571
    • /
    • 2009
  • 스포츠 경기의 비디오 중계는 생동감 있고 흥미로운 장면들을 시청자에게 제공해주기 위하여 여러 대의 카메라를 사용한다. 하지만 기존의 방송 시스템은 시청자에게 하나의 비디오로 편집된 장면만을 제공하기 때문에 시청자의 관심도를 고려하여 특정 장면을 요약해주거나 검색해주는 등의 지능형 방송 서비스가 어렵다. 본 논문에서는 여러 대의 카메라로 촬영한 축구경기 비디오를 요약 및 검색해주는 시스템을 제안한다. 이는 비디오에 주석으로 태깅되어있는 저수준 정보를 기반으로 하는 동적 베이지안 네트워크를 이용하여 슛, 크로스, 반칙, 세트플레이 등과 같은 주요장면을 추출하고, 해당 주요장면타입에 따라 자동으로 뷰를 선택한다. 따라서 제안하는 시스템은 사용자에게 주요장면 요약이나 선호하는 뷰의 선택기능을 제공하며, 사용자의 선호도를 고려할 경우 개인화 방송 서비스를 제공해줄 수 있다.

  • PDF

Creating Deep Learning-based Acrobatic Videos Using Imitation Videos

  • Choi, Jong In;Nam, Sang Hun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.713-728
    • /
    • 2021
  • This paper proposes an augmented reality technique to generate acrobatic scenes from hitting motion videos. After a user shoots a motion that mimics hitting an object with hands or feet, their pose is analyzed using motion tracking with deep learning to track hand or foot movement while hitting the object. Hitting position and time are then extracted to generate the object's moving trajectory using physics optimization and synchronized with the video. The proposed method can create videos for hitting objects with feet, e.g. soccer ball lifting; fists, e.g. tap ball, etc. and is suitable for augmented reality applications to include virtual objects.

그래프에 기반한 전역적 정합 방법 (Graph-Based framework for Global Registration)

  • 김현우;홍기상
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.671-674
    • /
    • 2000
  • In this paper, we present a robust global registration algorithm for multi-frame image mosaics. When we perform a pair-wise registration recovering a projective transformation between two consecutive frames, severe mis-registration among multiple frames, which are not consecutive, can be detected. It is because the concatenation of those pair-wise transformations leads to global alignment errors. To overcome those mis-registrations, we propose a new algorithm using multiple frames for constructing image mosaics. We use a graph to represent the temporal and spatial connectivity and show that global registration can be obtained through the search for an optimal path in the constructed graph. The definition of an adequate objective function characterizing the global registration provides a direct manipulation of the graph. In the presence of moving objects, especially large ones compared with low texture backgrounds, by using the likelihood ratio as the objective function, we can deal with some of the most challenging videos like basketball or soccer Moreover, the algorithm can be parallelized so it can be more efficiently implemented. Finally, we give some experimental results from real videos.

  • PDF