• Title/Summary/Keyword: SoC-FPGA

Search Result 157, Processing Time 0.023 seconds

Acquisition, Processing and Image Generation System for Camera Data Onboard Spacecraft

  • C.V.R Subbaraya Sastry;G.S Narayan Rao;N Ramakrishna;V.K Hariharan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.94-100
    • /
    • 2023
  • The primary goal of any communication spacecraft is to provide communication in variety of frequency bands based on mission requirements within the Indian mainland. Some of the spacecrafts operating in S-band utilizes a 6m or larger aperture Unfurlable Antenna (UFA for S-band links and provides coverage through five or more S-band spot beams over Indian mainland area. The Unfurlable antenna is larger than the satellite and so the antenna is stowed during launch. Upon reaching the orbit, the antenna is deployed using motors. The deployment status of any deployment mechanism will be monitored and verified by the telemetered values of micro-switch position before the start of deployment, during the deployment and after the completion of the total mechanism. In addition to these micro switches, a camera onboard will be used for capturing still images during primary and secondary deployments of UFA. The proposed checkout system is realized for validating the performance of the onboard camera as part of Integrated Spacecraft Testing (IST) conducted during payload checkout operations. It is designed for acquiring the payload data of onboard camera in real-time, followed by archiving, processing and generation of images in near real-time. This paper presents the architecture, design and implementation features of the acquisition, processing and Image generation system for Camera onboard spacecraft. Subsequently this system can be deployed in missions wherever similar requirement is envisaged.

Hardware Implementation of Real-Time Blind Watermarking by Substituting Bitplanes of Wavelet DC Coefficients (웨이블릿 DC 계수의 비트평면 치환방법에 의한 실시간 블라인드 워터마킹 및 하드웨어 구현)

  • 서영호;김동욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3C
    • /
    • pp.398-407
    • /
    • 2004
  • In this paper, a blind watermarking method which is suitable to the video compression using 2-D discrete wavelet transform was proposed and implemented into the hardware using VHDL(VHSIC Hardware Description Language). The goal of the proposed watermarking algorithm is the authentication about the manipulation of the watermark embedded image and the detection of the error positions. Considering the compressed video image, the proposed watermarking scheme is unrelated to the quantization and is able to concurrently embed or extract the watermark. We experimentally verified that the lowest frequency subband(LL4) is not sensitive to the change in the spatial domain, so LL4 subband was selected for the mark space. And the combination of the bitplanes which has the properties of both the minimum degradation of the image and the robustness was chosen as the embedded Point in the mark space in LL4 subband. Since we know the watermark embedded positions and the watermark is embedded by not varying the value but changing the value, the watermark can be extracted without the original image. Also, for the security when exposing the watermark embedded position, we embed the encrypted watermark by the block cipher. The proposed watermark algorithm shows the robustness against the general image manipulation and is easily transplanted into the image or video compressor with the minimal changing in the structure. The designed hardware has 4037 LABs(24%) and 85 ESBs(3%) in APEX20KC EP20K400CF672C7 FPGA of Altera and stably operates in 82MHz clock frequency.

The Design of Multi-channel Synchronous and Asynchronous Communication IC for the Smart Grid (스마트그리드를 위한 다채널 동기 및 비동기 통신용 IC 설계)

  • Ock, Seung-Kyu;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.7-13
    • /
    • 2011
  • In this paper, the IC(Integrated Circuit) for multi-channel synchronous communication was designed by using FPGA and VHDL language. The existing chips for synchronous communication that has been used commercially are composed for one to two channels. Therefore, when communication system with three channels or more is made, the cost becomes high and it becomes complicated for communication system to be realized and also has very little buffer, load that is placed into Microprocessor increases heavily in case of high speed communication or transmission of high-capacity data. The designed IC was improved the function and performance of communication system and reduced costs by designing 8 synchronous communication channels with only one IC, and it has the size of transmitter/receiver buffer with 1024 bytes respectively and consequently high speed communication became possible. It was designed with a communication signal of a form various encoding. To detect errors of communications, the CRC-ITU-T logic and channel MUX logic was designed with hardware logics so that the malfunction can be prevented and errors can be detected more easily and input/output port regarding each communication channel can be used flexibly and consequently the reliability of system was improved. In order to show the performance of designed IC, the test was conducted successfully in Quartus simulation and experiment and the excellence was compared with the 85C3016VSC of ZILOG company that are used widely as chips for synchronous communication.

Design of Image Extraction Hardware for Hand Gesture Vision Recognition

  • Lee, Chang-Yong;Kwon, So-Young;Kim, Young-Hyung;Lee, Yong-Hwan
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.71-83
    • /
    • 2020
  • In this paper, we propose a system that can detect the shape of a hand at high speed using an FPGA. The hand-shape detection system is designed using Verilog HDL, a hardware language that can process in parallel instead of sequentially running C++ because real-time processing is important. There are several methods for hand gesture recognition, but the image processing method is used. Since the human eye is sensitive to brightness, the YCbCr color model was selected among various color expression methods to obtain a result that is less affected by lighting. For the CbCr elements, only the components corresponding to the skin color are filtered out from the input image by utilizing the restriction conditions. In order to increase the speed of object recognition, a median filter that removes noise present in the input image is used, and this filter is designed to allow comparison of values and extraction of intermediate values at the same time to reduce the amount of computation. For parallel processing, it is designed to locate the centerline of the hand during scanning and sorting the stored data. The line with the highest count is selected as the center line of the hand, and the size of the hand is determined based on the count, and the hand and arm parts are separated. The designed hardware circuit satisfied the target operating frequency and the number of gates.

Microcode based Controller for Compact CNN Accelerators Aimed at Mobile Devices (모바일 디바이스를 위한 소형 CNN 가속기의 마이크로코드 기반 컨트롤러)

  • Na, Yong-Seok;Son, Hyun-Wook;Kim, Hyung-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.355-366
    • /
    • 2022
  • This paper proposes a microcode-based neural network accelerator controller for artificial intelligence accelerators that can be reconstructed using a programmable architecture and provide the advantages of low-power and ultra-small chip size. In order for the target accelerator to support various neural network models, the neural network model can be converted into microcode through microcode compiler and mounted on accelerator to control the operators of the accelerator such as datapath and memory access. While the proposed controller and accelerator can run various CNN models, in this paper, we tested them using the YOLOv2-Tiny CNN model. Using a system clock of 200 MHz, the Controller and accelerator achieved an inference time of 137.9 ms/image for VOC 2012 dataset to detect object, 99.5ms/image for mask detection dataset to detect wearing mask. When implementing an accelerator equipped with the proposed controller as a silicon chip, the gate count is 618,388, which corresponds to 65.5% reduction in chip area compared with an accelerator employing a CPU-based controller (RISC-V).

ATM Cell Encipherment Method using Rijndael Algorithm in Physical Layer (Rijndael 알고리즘을 이용한 물리 계층 ATM 셀 보안 기법)

  • Im Sung-Yeal;Chung Ki-Dong
    • The KIPS Transactions:PartC
    • /
    • v.13C no.1 s.104
    • /
    • pp.83-94
    • /
    • 2006
  • This paper describes ATM cell encipherment method using Rijndael Algorithm adopted as an AES(Advanced Encryption Standard) by NIST in 2001. ISO 9160 describes the requirement of physical layer data processing in encryption/decryption. For the description of ATM cell encipherment method, we implemented ATM data encipherment equipment which satisfies the requirements of ISO 9160, and verified the encipherment/decipherment processing at ATM STM-1 rate(155.52Mbps). The DES algorithm can process data in the block size of 64 bits and its key length is 64 bits, but the Rijndael algorithm can process data in the block size of 128 bits and the key length of 128, 192, or 256 bits selectively. So it is more flexible in high bit rate data processing and stronger in encription strength than DES. For tile real time encryption of high bit rate data stream. Rijndael algorithm was implemented in FPGA in this experiment. The boundary of serial UNI cell was detected by the CRC method, and in the case of user data cell the payload of 48 octets (384 bits) is converted in parallel and transferred to 3 Rijndael encipherment module in the block size of 128 bits individually. After completion of encryption, the header stored in buffer is attached to the enciphered payload and retransmitted in the format of cell. At the receiving end, the boundary of ceil is detected by the CRC method and the payload type is decided. n the payload type is the user data cell, the payload of the cell is transferred to the 3-Rijndael decryption module in the block sire of 128 bits for decryption of data. And in the case of maintenance cell, the payload is extracted without decryption processing.

Design of Video Encoder activating with variable clocks of CCDs for CCTV applications (CCTV용 CCD를 위한 가변 clock으로 동작되는 비디오 인코더의 설계)

  • Kim, Joo-Hyun;Ha, Joo-Young;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.80-87
    • /
    • 2006
  • SONY corporation preoccupies $80\%$ of a market of the CCD used in a CCTV system. The CCD of SONY have high duality which can not follow the progress of capability. But there are some problems which differ the clock frequency used in CCD from the frequency used in common video encoder. To get the result by using common video encoder, the system needs a scaler that could adjust image size and PLL that synchronizes CCD's with encoder's clock So, this paper proposes the video encoder that is activated at equal clock used in CCD without scaler and PLL. The encoder converts ITU-R BT.601 4:2:2 or ITU-R BT.656 inputs from various video sources into NTSC or PAL signals in CVBS. Due to variable clock, property of filters used in the encoder is automatically changed by clock and filters adopt multiplier-free structures to reduce hardware complexity. The hardware bit width of programmable digital filters for luminance and chrominance signals, along with other operating blocks, are carefully determined to produce hish-quality digital video signals of ${\pm}1$ LSB error or less. The proposed encoder is experimentally demonstrated by using the Altera Stratix EP1S80B953C6ES device.