• Title/Summary/Keyword: SoC design

Search Result 1,524, Processing Time 0.03 seconds

A Design of Flag Based Wrapped Core Linking Module for Hierarchical SoC Test Access (계층적 SoC테스트 접근을 위한 플래그 기반 코아 연결 모듈의 설계)

  • 송재훈;박성주;전창호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.1
    • /
    • pp.52-60
    • /
    • 2003
  • For a System-on-a-Chip(SoC) comprised of multiple IP cores, various design techniques have been proposed to provide diverse test link configurations. In this paper, we introduce a new flag based Wrapped Core Linking Module (WCLM) that enables systematic integration of IEEE 1149.1 TAP'd cores and P1500 wrapped cores with requiring least amount of area overhead compared with other state-of-art techniques. The design preserves compatibility with standards and scalability for hierarchical access.

Hot Issue-Low Power CMOS SoC Design

  • Kuroda, Tadahiro
    • IT SoC Magazine
    • /
    • s.1
    • /
    • pp.37-41
    • /
    • 2004
  • 전력이라는 장벽 때문에 공정 스케일링은 점점 어려워지고 있다. 반면, 미래의 컴퓨터와 통신은 더더욱 낮은 전력 소모를 필요로 한다. 아직은 에너지 효율적인 공정이 널리 보급되고 있지 않으므로, 저전력 CMOS SoC 설계는 여전히 큰 어려움이 있다. 본문에서는 CMOS의 전력 감소를 위해 무엇을 어떻게 해야 하는지 알아보도록 한다.

  • PDF

Design of an Asynchronous FIFO for SoC Designs Using a Valid Bit Scheme (SoC 설계를 위한 유효 비트 방식의 비동기 FIFO설계)

  • Lee Yong-hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1735-1740
    • /
    • 2005
  • SoC design integrates many IPs that operate at different frequencies and the use of the different clock for each IP makes the design the most effective one. An asynchronous FIFO is required as a kind of a buffer to connect IPs that are asynchronous. However, in many cases, asynchronous FIFO is designed improperly and the cost of the wrong design is high. In this paper, an asynchronous FIFO is designed to transfer data across asynchronous clock domains by using a valid bit scheme that eliminates the problem of the metastability and synchronization altogether. This FIFO architecture is described in HDL and synthesized to the Bate level to compare with other FIFO scheme. The subject mater of this paper is under patent pending.

MB-OFDM UWB modem SoC design (MB-OFDM 방식 UWB 모뎀의 SoC칩 설계)

  • Kim, Do-Hoon;Lee, Hyeon-Seok;Cho, Jin-Woong;Seo, Kyeung-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.806-813
    • /
    • 2009
  • This paper presents a modem chip design for high-speed wireless communications. Among the high-speed communication technologies, we design the UWB (Ultra-Wideband) modem SoC (System-on-Chip) Chip based on a MB-OFDM scheme which uses wide frequency band and gives low frequency interference to other communication services. The baseband system of the modem SoC chip is designed according to the standard document published by WiMedia. The SoC chip consists of FFT/IFFT (Fast Fourier Transform/Inverse Fast Fourier Transform), transmitter, receiver, symbol synchronizer, frequency offset estimator, Viterbi decoder, and other receiving parts. The chip is designed using 90nm CMOS (Complementary Metal-Oxide-Semiconductor) procedure. The chip size is about 5mm x 5mm and was fab-out in July 20th, 2009.

Embedded ARM based SoC Implementation for 5.8GHz DSRC Communication Modem (임베디드 ARM 기반의 5.8GHz DSRC 통신모뎀에 대한 SOC 구현)

  • Kwak, Jae-Min;Shin, Dae-Kyo;Lim, Ki-Taek;Choi, Jong-Chan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.185-191
    • /
    • 2006
  • DSRC((Dedicated Short Range Communication) is dedicated short range communication for wireless communications between RSE(Road Side Equipment) and OBE(On-Board Unit) within vehicle moving high speed. In this paper, we implemented 5.8GHz DSRC modem according to Korea TTA(Telecommunication Technology Association) standard and investigated implementation results and design process for SoC(System on a Chip) embedding ARM CPU which control overall signal and process arithmetic work. The SoC is implemented by 0.11um design technology and 480pins EPBGA package. In the implemented SoC ($Jaguar^{TM}$), 5.8GHz DSRC PHY(Physical Layer) modem and MAC are designed and included. For CPU core ARM926EJ-S is embedded, and LCD controller, smart card controller, ethernet MAC, and memory controller are designed as main function.

An Ultrasonic Positioning System Using Zynq SoC (Zynq-SoC를 이용한 초음파 위치추적 시스템)

  • Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1250-1256
    • /
    • 2017
  • In this research, a high-performance ultrasonic positioning system is proposed to track the positions of an indoor mobile object. Composed of an ultrasonic sender (mobile object) and a receiver (anchor), the system employs three ultrasonic time-off-flights (TOFs) and trilateration to estimate the positions of the object with an accuracy of sub-centimeter. On the other hand, because ultrasonic waves are interfered by temperature, wind and various obstacles obstructing the propagation while propagating in air, ultrasonic pulse debounce technique and Kalman filter were applied to TOF and position calculation, respectively, to compensate for the interference and to obtain more accurate moving object position. To perform tasks in real time, ultrasonic signals are processed full-digitally with a Zynq SoC, and as a software design tool, Vivado IDE(integrated design environment) is used to design the whole signal processing system in hierarchical block diagrams. And, a hardware/software co-design is implemented, where the digital circuit portion is designed in the Zynq's fpga and the software portion is c-coded in the Zynq's processors by using the baremetal multiprocessing scheme in which the c-codes are distributed to dual-core processors, cpu0 and cpu1. To verify the usefulness of the proposed system, experiments were performed and the results were analyzed, and it was confirmed that the moving object could be tracked with accuracy of sub-cm.

A Design of Instruction Based Wrapped Core Linking Module for Hierarchical SoC Test Access (계층적 SoC 테스트 접근을 위한 명령어 기반 코아 연결 모듈의 설계)

  • Yi Hyun-Bean;Park Sung-Ju
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.156-162
    • /
    • 2003
  • For a System-on-a-Chip(SoC) comprised of multiple IP cores, various design techniques have been proposed to provide diverse test link configurations. In this paper, we introduce a new instruction based Wrapped Core Linking Module(WCLM) that enables systematic integration of IEEE 1149.1 TAP'd cotes and P1500 wrapped cores with requiring least amount of area overhead compared with other state-of-art techniques. The design preserves compatibility with standards and scalability for hierarchical access.

Design and Implementation of Hardware for various vision applications (컴퓨터 비전응용을 위한 하드웨어 설계 및 구현)

  • Yang, Keun-Tak;Lee, Bong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.156-160
    • /
    • 2011
  • This paper describes the design and implementation of a System-on-a-Chip (SoC) for pattern recognition to use in embedded applications. The target Soc consists of LEON2 core, AMBA/APB bus-systems and custom-designed accelerators for Gaussian Pyramid construction, lighting compensation and histogram equalization. A new FPGA-based prototyping platform is implemented and used for design and verification of the target SoC. To ensure that the implemented SoC satisfies the required performances, a pattern recognition application is performed.

Digital Audio Effect System-on-a-Chip Based on Embedded DSP Core

  • Byun, Kyung-Jin;Kwon, Young-Su;Park, Seong-Mo;Eum, Nak-Woong
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.732-740
    • /
    • 2009
  • This paper describes the implementation of a digital audio effect system-on-a-chip (SoC), which integrates an embedded digital signal processor (DSP) core, audio codec intellectual property, a number of peripheral blocks, and various audio effect algorithms. The audio effect SoC is developed using a software and hardware co-design method. In the design of the SoC, the embedded DSP and some dedicated hardware blocks are developed as a hardware design, while the audio effect algorithms are realized using a software centric method. Most of the audio effect algorithms are implemented using a C code with primitive functions that run on the embedded DSP, while the equalization effect, which requires a large amount of computation, is implemented using a dedicated hardware block with high flexibility. For the optimized implementation of audio effects, we exploit the primitive functions of the embedded DSP compiler, which is a very efficient way to reduce the code size and computation. The audio effect SoC was fabricated using a 0.18 ${\mu}m$ CMOS process and evaluated successfully on a real-time test board.

Pipelined Scheduling of Functional HW/SW Modules for Platform-Based SoC Design

  • Kim, Won-Jong;Chang, June-Young;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.533-538
    • /
    • 2005
  • We developed a pipelined scheduling technique of functional hardware and software modules for platform-based system-on-a-chip (SoC) designs. It is based on a modified list scheduling algorithm. We used the pipelined scheduling technique for a performance analysis of an MPEG4 video encoder application. Then, we applied it for architecture exploration to achieve a better performance. In our experiments, the modified SoC platform with 6 pipelines for the 32-bit dual layer architecture shows a 118% improvement in performance compared to the given basic SoC platform with 4 pipelines for the 16-bit single-layer architecture.

  • PDF