• Title/Summary/Keyword: Snowfall Water Equivalent

Search Result 7, Processing Time 0.016 seconds

Development of Weight Type Snowfall Gauge and Observation (중량식 강설량계 개발과 관측)

  • Lee, Bu-Yong
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.255-261
    • /
    • 2009
  • We need water equivalent unit data of snowfall for the purpose of forecast and hydrology related research area. This study developed new method of automatic recording snowfall as weight unit. The instrument designed for measuring weight of snowfall by stain-gauge loadcell. Field test of instrument carried out at Daegwallyeong Obs. Station from 22 Jan. to 22 Feb. 2007. During observation period there is 15.3 cm snow depth and 16.0 mm of accumulated water equivalent depth at Daegwallyeong Obs. Station on 13 to 14 Feb. 2007. But the instrument of this study recorded 22.1 mm of water equivalent depth. It is not easy to explain difference between Daegwallyeong and this study. Because this study is only one case of comparison of snow measurement and there is very little amount of snow observation research. The density of snowfall calculated from 0.09 to $0.15g/cm^3$ from the observation data of 13 to 14 Feb. 2007. There is high relation between radar echo and snowfall amount measured by weight unit. It can supports forecast of snowfall and development of numerical model for forecast.

A Study of Quantitative Snow Water Equivalent (SWE) Estimation by Comparing the Snow Measurement Data (적설 관측자료 비교를 통한 정량적 SWE 산출에 관한 연구)

  • Ro, Yonghun;Chang, Ki-Ho;Cha, Joo-Wan;Chung, Gunhui;Choi, Jiwon;Ha, Jong-Chul
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.269-282
    • /
    • 2019
  • While it is important to obtain the accurate information on snowfall data due to the increase in damage caused by the heavy snowfall in the winter season, it is not easy to observe the snowfall quantitatively. Recently, snow measurements using a weighing precipitation gauge have been carried out, but there is a problem that high snowfall intensity results in low accuracy. Also, the observed snowfall data are sensitive depending on wind speed, temperature, and humidity. In this study, a new process of quality control for snow water equivalent (SWE) data of the weighing precipitation gauge were proposed to cover the low accuracy of snow data and maximize the data utilization. Snowfall data (SWE) observed by Pluvio, Parsivel, snow-depth meter using laser or ultrasonic, and rainfall gauge in Cloud Physics Observation Site (CPOS) were compared and analyzed. Applying the QC algorithm including the use of number of hydrometeor particles as reference, the increased SWE per the unit time was determined and the data noise was removed and marked by flag. The SWE data converted by the number concentration of hydrometeor particles are tested as a method to restore the QC-removed data, and show good agreement with those of the weighing precipitation gauge, though requiring more case studies. The three events data for heavy snowfall disaster in Pyeongchang area was analyzed. The SWE data with improved quality was showed a good correlation with the eye-measured data ($R^2$ > 0.73).

Long-term Changes in Wintertime Precipitation and Snowfall over Gangwon Province (강원 지역의 장기 겨울철 강수 및 강설 변화의 경향 분석)

  • Baek, Hee-Jeong;Ahn, Kwangdeuk;Joo, Sangwon;Kim, Yoonjae
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.109-123
    • /
    • 2017
  • The effects of recent climate change on hydrological systems could affect the Winter Olympic Games (WOG) because the event is dependent on suitable snow and ice conditions to support elite-level competitions. We investigate the long-term variability and change in winter total precipitation (P), snowfall water equivalent (SFE), and ratios of SFE to P during the period 1973/74~2015/16 in Gangwon province. The climatological percentages of SFE relative to winter total precipitation were 71%, 28%, and 44% in Daegwallyeong, Chuncheon, and Gangneung, respectively. The winter total P, SFE, and SFE/P has decreased (but not significantly), although significant increases of winter maximum and minimum temperature were detected at a 95% confidence level. Notably, a significant negative trend of SFE/P at Daegwallyeong in February, the month of the WOG, was attributable to a larger decrease in SFE related to the increases in maximum and minimum temperature. Winter wet-day minimum temperatures were warmer than climatological minimum temperatures averaged over the study period. The 20-year return values of daily maximum P and SFE decreased in Yongdong area. Since the SFE/P decrease with increasing temperature, the probability of rainfall rather than snowfall can increase if global warming continues.

Development of Weight Type Rounded Snow Plate (중량식 원형 적설판 개발에 관한 연구)

  • Lee, Bu-Yong;Kim, Hyun-Chul
    • Atmosphere
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • We need water equivalent unit data of snowfall for the purpose of forecast and hydrology related research area. This study developed new method of automatic recording snowfall as weight unit with circle type plate using stain-gauge loadcell. Field test of instrument carried out at Daegwallyeong Obs. Station from 20 to 23 Jan. 2008 during heavy snowfall. There is 74.2cm snow depth and 54.6mm precipitation by Daegwallyeong Obs. Station. But the instrument of this study recorded 71.0mm of precipitation amount. Because of different observation method can cause more 15.4mm than Daegwallyeong Obs. Station. But this study gives the possibility of observation of new snow fall measurement under freezing conditions of snow. From the observation data the density of snowfall calculated from 0.09 to $1015g/cm_3$ from the observation period. And have a good relations between manual observation and automatic observation data from this study instrument with slope of 1.35 to 1.39.

A Study on the Radar Reflectivity-Snowfall Rate Relation for Yeongdong Heavy Snowfall Events (영동 대설사례의 레이더 강설강도 추정 관계식에 관한 연구)

  • Jung, Sueng-Pil;Kwon, Tae-Yong;Park, Jun-Young;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.509-522
    • /
    • 2016
  • Heavy snowfall events have occurred frequently in the Yeongdong region but understanding of these events have trouble in lack of snowfall observation in this region because it is composed of complex topography like the "Taebaek mountains" and the "East sea". These problems can be solved by quantitative precipitation estimation technique using remote sensing such as radar, satellite, etc. Two radars which are able to cover over Yeondong region were installed at Gangneung (GNG) and Gwangdeoksan (GDK). This study uses radar and water equivalent of snow cover to investigate the characteristics of radar echoes and the $Z_e-R$ relations associated with the 10 Yeongdong heavy snowfall events during the last 5 years (2010~2014). It was found that the heights which the probability of detection (POD) of snow detection by GNG radar is more than 80% are 3,000 m and 1,500 m in convective cloud and stratiform cloud, respectively. The vertical gradient of radar reflectivity is less decreased in convective cloud than stratiform cloud. However, POD by GDK radar are lower than 80% at all layers because the majority of Yeondong observational stations are more than 100 km away from GDK radar site. Furthermore, we examined $Z_e-R$ relation from the 10 events using GNG radar and compared the "a" and "b" obtained from these examinations at Sokcho (SC) and Daegwallyeong (DG). These "a" and "b" are estimated from radar echo at 500 m (SC) and 1,500 m (DG). The values of "a" differ in their stations such as SC and DG are 30~116 and 6~39, respectively. But "b" is 0.4~1.7 irrespective of stations. Moreover, the value of "a" increased with surface air temperature. Therefore, quantitative precipitation estimation in heavy snowfall events by radar echo using fixed "a" and "b" is difficult because these values changed according to those precipitation characteristics.

Projection of Future Snowfall and Assessment of Heavy Snowfall Vulnerable Area Using RCP Climate Change Scenarios (RCP 기후변화 시나리오에 따른 미래 강설량 예측 및 폭설 취약지역 평가)

  • Ahn, So Ra;Lee, Jun Woo;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.545-556
    • /
    • 2015
  • This study is to project the future snowfall and to assess heavy snowfall vulnerable area in South Korea using ground measured snowfall data and RCP climate change scenarios. To identify the present spatio-temporal heavy snowfall distribution pattern of South Korea, the 40 years (1971~2010) snowfall data from 92 weather stations were used. The heavy snowfall days above 20 cm and areas has increased especially since 2000. The future snowfall was projected by HadGEM3-RA RCP 4.5 and 8.5 scenarios using the bias-corrected temperature and snow-water equivalent precipitation of each weather station. The maximum snowfall in baseline period (1984~2013) was 122 cm and the future maximum snow depth was projected 186.1 cm, 172.5 mm and 172.5 cm in 2020s (2011~2040), 2050s (2041~2070) and 2080s (2071~2099) for RCP 4.5 scenario, and 254.4 cm, 161.6 cm and 194.8 cm for RCP 8.5 scenario respectively. To analyze the future heavy snowfall vulnerable area, the present snow load design criteria for greenhouse (cm), cattleshed ($kg/m^2$), and building structure ($kN/m^2$) of each administrative district was applied. The 3 facilities located in present heavy snowfall areas were about two times vulnerable in the future and the areas were also extended.

Characteristics of Precipitation over the East Coast of Korea Based on the Special Observation during the Winter Season of 2012 (2012년 특별관측 자료를 이용한 동해안 겨울철 강수 특성 분석)

  • Jung, Sueng-Pil;Lim, Yun-Kyu;Kim, Ki-Hoon;Han, Sang-Ok;Kwon, Tae-Yong
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.41-53
    • /
    • 2014
  • The special observation using Radiosonde was performed to investigate precipitation events over the east coast of Korea during the winter season from 5 January to 29 February 2012. This analysis focused on the various indices to describe the characteristics of the atmospheric instability. Equivalent Potential Temperature (EPT) from surface (1000 hPa) to middle level (near 750 hPa) was increased when the precipitation occurred and these levels (1000~750 hPa) had moisture enough to cause the instability of atmosphere. The temporal evolution of Convective Available Potential Energy (CAPE) appeared to be enhanced when the precipitation fell. Similar behavior was also observed for the temporal evolution of Storm Relative Helicity (SRH), indicating that it had a higher value during the precipitation events. To understand a detailed structure of atmospheric condition for the formation of precipitation, the surface remote sensing data and Automatic Weather System (AWS) data were analyzed. We calculated the Total Precipitable Water FLUX (TPWFLUX) using TPW and wind vector. TPWFLUX and precipitation amount showed a statistically significant relationship in the north easterly winds. The result suggested that understanding of the dynamical processes such as wind direction be important to comprehend precipitation phenomenon in the east coast of Korea.