• 제목/요약/키워드: Snow loads

검색결과 44건 처리시간 0.021초

원예시설의 지붕형식에 따른 단면력의 비교분석 (Comparison of Maximum Section Forces of Greenhouse Structures with respect to Roof Types)

  • 이석건;이현우;손정억;이종원
    • 한국농공학회지
    • /
    • 제36권3호
    • /
    • pp.84-89
    • /
    • 1994
  • Section forces of greenhouse structures were studied to suggest basic information for the structural design of greenhouses with respect to roof types and support conditions. Structural analyses were performed for pitched and arched roof, and fixed and hinged support under snow loads and wind loads. Followings are the results obtained and are expected to be useful in determining the span length and roof type in greenhouse design. 1. Special considerations might he required for roof design at the heavy snow region, and for the support design at the strong wind region, respectively. 2. Single-span structure was found to be stronger than multi-span structure under the snow load, but the former was found to be weaker than the latter under the wind load. 3. Arched roof structure was expected to be safer than pitched roof structure if the dimensions and loads were equal. 4. Greenhouse orientation and roof slope should be considered in optimum structural design of grrenhouses, because these two factors are closely related with the influence of wind load and snow load.

  • PDF

Effects of dead loads on the static analysis of plates

  • Takabatake, Hideo
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.761-781
    • /
    • 2012
  • The collapse of structures due to snow loads on roofs occurs frequently for steel structures and rarely for reinforced concrete structures. Since the most significant difference between these structures is related to their ability to handle dead loads, dead loads are believed to play an important part in the collapse of structures by snow loads. As such, the effect of dead loads on displacements and stress couples produced by live loads is presented for plates with different edge conditions. The governing equation of plates that takes into account the effect of dead loads is formulated by means of Hamilton's principle. The existence and effect of dead loads are proven by numerical calculations based on the Galerkin method. In addition, a closed-form solution for simply supported plates is proposed by solving, in approximate terms, the governing equation that includes the effect of dead loads, and this solution is then examined. The effect of dead loads on static live loads can be explained explicitly by means of this closed-form solution. A method that reflects the effects of dead loads on live loads is presented as an example. The present study investigates an additional factor in lightweight roof structural elements, which should be considered due to their recent development.

내재해성이 우수한 비닐하우스골조 구조시스템 개발에 관한 연구 (A study on Development of Stress Tolerant Structural System in the Frame of Greenhouses)

  • 심종석;이춘호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권1호
    • /
    • pp.5-13
    • /
    • 2012
  • The frame of pipe greenhouses in Korea have been collapsed increasingly due to very weak in structure caused by the heavy snow and strong wind. In order to reduce the collapse of green houses, it is urgent to develop the new structural system in stress tolerant greenhouses. Therefore, this paper performed the structural analysis of greenhouse frame in accordance with snow loads and wind loads. Three type models in structural frame configuration of greenhouses, that is, existing type, diagrid type, and honeycomb type are selected. It was classfied the section shape of structural frames in greenhouses into arch style, standard style, and diagonal standard style. As a result of this paper, it was verified that the structural system of diagrid type is better than that of existing type against snow loads and wind loads in the frame of greenhouses.

한국의 적설하중 기준에 대한 평가 및 개선방안 (Assessment and Improvement of Snow Load Codes and Standards in Korea)

  • 유인상;김하룡;;정상만
    • 대한토목학회논문집
    • /
    • 제34권5호
    • /
    • pp.1421-1433
    • /
    • 2014
  • 본 연구에서는 적설심 빈도분석을 수행하기 위해 우리나라에 가장 적합한 확률분포형과 모수추정방법을 선정하였다. 최적확률분포형으로는 Generalized Extreme Value (GEV), 모수추정방법으로는 확률가중모멘트법이 선정되었다. 선정된 확률분포형과 모수추정방법을 적용하여 우리나라 69개 기상관측소별 적설심 빈도분석을 수행하였다. 빈도분석을 통해 관측소별 빈도별 적설심을 산정하였고 적설심과 눈의 단위중량을 이용하여 적설하중을 산정하였다. 산정된 적설하중 중 100년 빈도 적설하중을 이용하여 ArcGIS 크리깅(Kriging) 기법을 통해 우리나라 설계적설하중 지도를 작성하였다. 또한, 본 연구를 통해 산정된 적설하중과 건축구조기준 및 해설(2009)에서 제시하고 있는 설계적설하중을 비교하여 설계적설하중 기준의 적정성을 평가하였다. 평가결과, 대부분의 지역에서 현재 지상적설하중 기준의 상향조정이 요구되었으며 본 연구를 통해 도출된 결과를 반영하여 보다 합리적인 지역별 설계적설하중을 제안하였다. 본 연구를 통해 제안된 지역별 설계적설하중은 폭설에 대비한 우리나라 전역의 구조물 설계에 활용될 수 있을 것으로 기대된다.

플라스틱 온실의 폭설피해 방지를 위한 가지주 장치 개발 (Development of a Temporary Pole Supporting System to Protect the Plastic Greenhouses from Heavy Snow Damage)

  • 남상운
    • 한국농공학회지
    • /
    • 제44권4호
    • /
    • pp.107-113
    • /
    • 2002
  • The pipe framed and arch shape plastic greenhouse, which is the most popular greenhouse in Korea, is relatively weak in snowdrift. Reinforcement of rigid frame or column is required to reduce the damage from heavy snow in this type. But additional rigid frames or columns decrease light transmissivity or workability, and increase construction cost. So it is desirable to prepare some temporary poles and to install them when the warning of heavy snow is announced. This study was carried out to develop the temporary pole supporting system using galvanized steel pipes for plastic housing and to evaluate the safe snow load on a temporary pole. A pipe connector, which is inserted in the top of pipe used in the temporary pole and supports the center purline, was designed and manufactured to be able to carry the upper loads safely. And a bearing plate was safely designed and manufactured in order to carry the loads acting on it to the ground. When temporary poles of ${\phi}$ 25 pipe are installed at 2.4m interval, it shows that the single span plastic greenhouses with 5~7 m width are able to support the additional snow depth of 13.9~25.3 cm beyond the snow load supported by main frame.

슬레이트지붕 개량사업 구조안전성 검토 (A Study on the Structural Safety of the Roof Improvement Project)

  • 강경수
    • 한국농촌건축학회논문집
    • /
    • 제20권1호
    • /
    • pp.19-26
    • /
    • 2018
  • The roof improvement project is being carried out under the government's leadership for the sake of national welfare. The project is to replace the asbestos slate roof with a metallic one. In this study, the structural safety of the improved roof was examined and the project guidelines were reviewed. The causes of the roof damage were investigated and the structural analysis was performed for the roof frame subject to wind and snow loads. Metallic roof assemblies have higher strength and load resistance capability than usual slate ones, so the structural safety is governed by the frame. The stresses of the roof frame elements caused by the wind and snow loads were analyzed according to roof frame with various spacings between the rafters and the purlins. Wind load analysis was performed by 24, 28, and 38 m/sec of the basic wind speed. Snow load analysis was carried out by 0.5, 1.0 and $2.0kN/m^2$ of the ground snow load. As the analysis result, the current spacing and the size of the lumber did not satisfy the Korean building code specification. To secure the safety of the roof improvement project, the spacing of the roof frame elements and the size of the lumber should be determined based on the analysis results by structural engineers.

강선으로 보강된 연동형 비닐하우스 골조의 구조거동 (Behavior of Multiple Vinyl House Frames Reinforced by Steel Wire)

  • 정동조;김진;서윤수
    • 한국농촌건축학회논문집
    • /
    • 제18권3호
    • /
    • pp.35-42
    • /
    • 2016
  • For the reason of economy, farmers and structural engineers prefer the vinyl house frame members that have the lightest cross sections. Therefore, in order to reach this aim, rod bracing system is the best method for multiple vinyl house frames. In this study, wire rods (tension members) are used to be bracing members in multiple vinyl house frames. The effects of additional wire rods in the frames are investigated by the variations of the bending moments, axial forces, displacements and combined stresses in the main frames that are reinforced by different shapes of rod bracing system. Vinyl house frames are usually made by steel pipe members and collapsed by the excessive wind and snow loads. Two kinds of bracing models are used for wind and snow loads separately in this study. The effective bracing models for each load are finally figured out.

농업시설의 설계하중 산정을 위한 적정 단위적설중량과 순간최대풍속의 결정 및 적용 (Determination of Resonable Unit Snow Weight and Greatest Gust Speed for Design of Agricultural Structures and their Applications)

  • 손정익
    • 생물환경조절학회지
    • /
    • 제3권1호
    • /
    • pp.1-9
    • /
    • 1994
  • 본 연구는 상대적으로 활하중의 영향이 민감하게 작용하는 농업시설의 합리적 구조설계를 위하여 우리나라 60개 지역의 자료를 사용하여 중요한 설계하중의 결정요인인 단위적설중량, 순간최대풍속 및 최대신적설심의 그 적용에 관하여 검토하였고, 얻어진 결과를 요약하면 다음과 같다. 1. 적설심에 다른 단위적설중량을 분석한 결과 적설심에 따른 차이는 발견할 수 없었고 대체적으로 정규분포를 이루고 있다. 평균기온에 의하여 단위중량을 구분해본 결과 -1$^{\circ}C$ 이상에서는 단위중량이 평균 0.91kg/cm/$m^2$, -1$^{\circ}C$ 이하에서는 평균 0.58kg/cm/$m^2$로 나타나 기온에 의한 차이가 명확했다. 2. 평균최대풍속과 순간최대풍속과의 관계를 도출하여 회귀식을 유도한 결과, 일반적으로 사용하고 있는 순간최대풍속 관계식과는 약간의 차이를 보였다. 해안지방과 내륙지방에 2개지역으로 구분하여 순간최대풍속 관계식을 유도하였다. 3. 재현기간별 최대적설심과 최대신적설심을 비교한 결과, 눈이 적은 지방에서는 큰 차이가 없으나, 비교적 눈이 많은 지방의 경우 재현기간 8년에서는 24.6cm, 57년에서는 45.6cm로 큰 차이를 보여, 난방 및 적절한 관리를 전제로 설계하면 신적설에 의하여 설계하중을 크게 감소시킬 수 있음을 나타냈다. 4. 기존식과 수정식의 설계풍속(진주지역) 및 최대적설심과 최대신적설심(서산지역)의 적용시, 2연동아치형시설의 부재사용량은 각각의 경우에 대하여 +0.3배, -0.3배이었고, 2연동지붕형 시설의 부재사용량은 각각 +0.3배, -0.1배이었기 때문에 시설의 특성에 맞는 설계자료의 선정이 매우 중요하다.

  • PDF

Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs

  • Yu, Zhixiang;Zhu, Fu;Cao, Ruizhou;Chen, Xiaoxiao;Zhao, Lei;Zhao, Shichun
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.31-47
    • /
    • 2019
  • The accurate prediction of snow distributions under the wind action on roofs plays an important role in designing structures in civil engineering in regions with heavy snowfall. Affected by some factors such as building shapes, sizes and layouts, the snow drifting on roofs shows more three-dimensional characteristics. Thus, the research on three-dimensional snow distribution is needed. Firstly, four groups of stepped flat roofs are designed, of which the width-height ratio is 3, 4, 5 and 6. Silica sand with average radius of 0.1 mm is used to model the snow particles and then the wind tunnel test of snow drifting on stepped flat roofs is carried out. 3D scanning is used to obtain the snow distribution after the test is finished and the mean mass transport rate is calculated. Next, the wind velocity and duration is determined for numerical simulations based on similarity criteria. The adaptive-mesh method based on radial basis function (RBF) interpolation is used to simulate the dynamic change of snow phase boundary on lower roofs and then a time-marching analysis of steady snow drifting is conducted. The overall trend of numerical results are generally consistent with the wind tunnel tests and field measurements, which validate the accuracy of the numerical simulation. The combination between the wind tunnel test and CFD simulation for three-dimensional typical roofs can provide certain reference to the prediction of the distribution of snow loads on typical roofs.

배관시스템을 활용한 도로융설 시스템의 설계방법 (Design of Road Snow Melting system Using Piping System)

  • 김진호;김중헌;이건태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1251-1255
    • /
    • 2009
  • Snow melting system is adapted for safety and environment sides. Geothermal System has some problem of unbalance between summer and winter heat loads. Snow melting system with piping system is widely adapted in Japan. In this paper, the variation of road surface temperature along time for heating load is investigated. And for checking the difference between electrical melting system and piping melting system, other design parameters is investigated.

  • PDF