• Title/Summary/Keyword: Sn-doped SnO2

Search Result 252, Processing Time 0.032 seconds

Effect of process parameters of antimony doped tin oxide films prepared on flexible substrate at room temperature

  • Lee, Seong-Uk;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.175-175
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used as transparent conducting thin film material for application in various fields such as solar cells, optoelectronic devices, heat mirrors and gas sensors, etc. Recently the increased utilization of many transparent electrodes has accelerated the development of inexpensive TCO materials. Indium tin oxide (ITO) film is well-known for TCO materials because of its low resistivity, but there is disadvantage that it is too expensive. ZnO film is cheaper than ITO but it shows thermally poor stability. On the contrary, antimony-doped tin oxide films (ATO) are more stable than TCO films such as Al-doped zinc oxide (AZO) and ITO. Moreover, SnO2 film shows the best thermal and chemical stability, low cost and mechanical durability except the poor conductivity. However, annealing is proved to improve the conductivity of ATO film. Therefore, in this work, antimony (6 wt%) doped tin oxide films to improve the conductivity were deposited on 7059 corning glass by RF magnetron sputtering method for the application to transparent electrodes. In general, of all TCO films, glass is the most commonly selected substrate. However, for future development in flexible devices, glass is limited by its intrinsic inflexibility. In this study, we report the growth and properties of antimony doped tin oxide (ATO) films deposited on PES flexible substrate by using RF magnetron sputtering. The optimization process was performed varying the sputtering parameters, such as RF power and working pressure, and parameter effect on the structural, electrical and optical properties of the ATO films were investigated.

  • PDF

A Study on Thermo-properties of Fluorine Doped Tin Oxide Thin Film by APCVD Technique (APCVD법으로 성막된 SnO2:F 박막의 열적 특성 연구)

  • Kim, Yu-Seung;Ok, Yun-Deok;Kim, Min-Koung;Yi, Bo-Ram;Kim, Byung-Kuk;Lee, Jung-Min;Kim, Hoon;Kim, Hyung-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.37-40
    • /
    • 2009
  • 불소가 도핑된 산화주석(SnO2:F, FTO) 박막은 다결정 전도성 세라믹으로 가시광선 영역에서 투명하기 때문에 태양전지의 전극으로 활용된다. 본 연구에서 FTO는 APCVD법으로 성막되었다. BSG기판을 사용하여 $620^{\circ}C$의 고온에서 공정이 진행되었다. 이렇게 제작된 FTO 박막은 수소, 질소, 대기 분위기에서 여러 열처리 시간을 변수로 실험하여 열처리 전후의 전기적, 광학적, 구조적 변화를 관찰하고 분석하였다. 전기적 특성 분석에는 전기 비저항, 모빌리티 및 캐리어 농도 등의 변화를 알아보았고, 광학적 분석에는 UV-vis spectoscopy로 200nm에서 800nm 파장대역의 투과도를 구하고, Hazemeter를 통하여 총투과율, 평행투과율, 확산투과율 및 Haze를 분석하여 FTO막이 가지고 있는 texturing에 의한 효과를 알아보기 위하여 시편의 열처리 전후를 비교 분석하였다. 구조적 분석은 XRD를 이용하여 pattern을 분석하여 FTO가 가지는 구조변화를 분석하였다. 특히 FTO의 texturing에 기여도가 높은 (200)면의 XRD peak강도가 상승함에 따라 후열처리에 의해 박막의 표면의 변화가 일어남을 확인하였다. FTO의 후열처리에 의한 변화는 전기적으로는 약간의 전기 비저항의 증가를 가져오며, 캐리어 농도의 감소를 가져온다. 캐리어 농도의 감소에 따라 모빌리티의 상승이 관찰되었다. 광학적 특성은 가시광선 영역에서 투과율은 거의 같거나 약간 감소하는 경향을 나타내며, 후열처리 전후에 거의 동일한 투과율을 보이면서도 확산 투과율이 상승하는 분석 결과를 얻었다.

  • PDF

Synthesis and Luminescence of Lu3(Al,Si)5(O,N)12:Ce3+ Phosphors

  • Ahn, Wonsik;Kim, Young Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.463-467
    • /
    • 2016
  • $Si^{4+}-N^{3-}$ was incorporated into $Ce^{3+}-doped$ lutetium aluminum garnet ($Lu_{2.965}Ce_{0.035}Al_5O_{12}$, $LuAG:Ce^{3+}$) lattices, resulting in the formation of $Lu_{2.965}Ce_{0.035}Al_{5-x}Si_xO_{12-x}N_x$ [(Lu,Ce)AG:xSN]. For x = 0-0.25, the synthesized powders consisted of the LuAG single phase, and the lattice constant decreased owing to the smaller $Si^{4+}$ ions. However, for x > 0.25, a small amount of unknown impurity phases was observed, and the lattice constant increased. Under 450 nm excitation, the PL spectrum of $LuAG:Ce^{3+}$ exhibited the green band, peaking at 505 nm. The incorporation of $Si^{4+}-N^{3-}$ into the $Al^{3+}-O^{2-}$ sites of $LuAG:Ce^{3+}$ led to a red-shift of the emission peak wavelength from 505 to 570 nm with increasing x. Corresponding CIE chromaticity coordinates varied from the green to yellow regions. These behaviors were discussed based on the modification of the $5d^1$ split levels and crystal field surroundings of $Ce^{3+}$, which arose from the Ce-(O,N)8 bonds.

Enhanced Efficiency of Nanoporous-layer-covered TiO2 NanotubeArrays for Front Illuminated Dye-sensitized Solar Cells

  • Kang, Soon-Hyung;Lee, Soo-Yong;Kim, Jae-Hong;Choi, Chel-Jong;Kim, Hyunsoo;Ahn, Kwang-Soon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.52-57
    • /
    • 2016
  • Nanoporous-layer-covered TiO2 nanotube arrays (Type II TNTs) were fabricated by two-step electrochemical anodization. For comparison, conventional TiO2 nanotube arrays (Type I TNTs) were also prepared by one-step electrochemical anodization. Types I and II TNTs were detached by selective etching and then transferred successfully to a transparent F-doped SnO2 (FTO) substrate by a sol-gel process. Both FTO/Types I and II TNTs allowed front side illumination to exhibit incident photon-to-current efficiencies (IPCEs) in the long wavelength region of 300 to 750 nm without the absorption of light by the iodine-containing electrolyte. The Type II TNT exhibited longer electron lifetime and faster charge transfer than the Type I TNT because of its relatively fewer defect states. These beneficial effects lead to a high overall energy conversion efficiency (5.32 %) of the resulting dye-sensitized solar cell.

Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure (다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석)

  • Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Tae-Kyung Lee;Hyoung-Jae Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3 is a material with a wide band gap of ~4.8 eV and a high breakdown-voltage of 8 MV/cm, and is attracting much attention in the field of power device applications. In addition, compared to representative WBG semiconductor materials such as SiC, GaN and Diamond, it has the advantage of enabling single crystal growth with high growth rate and low manufacturing cost [1-4]. In this study, we succeeded in growing a 10 mm thick β-Ga2O3 single crystal doped with 0.3 mol% SnO2 through the EFG (Edge-defined Film-fed Growth) method using multi-slit structure. The growth direction and growth plane were set to [010]/(010), respectively, and the growth speed was about 12 mm/h. The grown β-Ga2O3 single crystal was cut into various crystal planes (010, 001, 100, ${\bar{2}}01$) and surface processed. The processed samples were compared for characteristics according to crystal plane through analysis such as XRD, UV/VIS/NIR/Spec., Mercury Probe, AFM and Etching. This research is expected to contribute to the development of power semiconductor technology in high-voltage and high-temperature applications, and selecting a substrate with better characteristics will play an important role in improving device performance and reliability.

Effect of Work Function of Zn-doped ITO Thin Films on Characteristics of Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지 특성에 대한 Zn 도핑된 ITO 박막의 일함수 효과)

  • Lee, Seung-Hun;Tark, Sung-Ju;Choi, Su-Young;Kim, Chan-Seok;Kim, Won-Mok;Kim, Dong-Hhwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.491-496
    • /
    • 2011
  • Transparent conducting oxides (TCOs) used in the antireflection layer and current spreading layer of heterojunction solar cells should have excellent optical and electrical properties. Furthermore, TCOs need a high work function over 5.2 eV to prevent the effect of emitter band-bending caused by the difference in work function between emitter and TCOs. Sn-doped $In_2O_3$ (ITO) film is a highly promising material as a TCO due to its excellent optical and electrical properties. However, ITO films have a low work function of about 4.8 eV. This low work function of ITO films leads to deterioration of the conversion efficiency of solar cells. In this work, ITO films with various Zn contents of 0, 6.9, 12.7, 28.8, and 36.6 at.% were fabricated by a co-sputtering method using ITO and AZO targets at room temperature. The optical and electrical properties of Zn-doped ITO thin films were analyzed. Then, silicon heterojunction solar cells with these films were fabricated. The 12.7 at% Zn-doped ITO films show the highest hall mobility of 35.71 $cm^2$/Vsec. With increasing Zn content over 12.7, the hall mobility decreases. Although a small addition of Zn content increased the work function, further addition of Zn content over 12.7 at.% led to decreasing electrical properties because of the decrease in the carrier concentration and hall mobility. Silicon heterojunction solar cells with 12.7 at% Zn-doped ITO thin films showed the highest conversion efficiency of 15.8%.

Preparation of ATO Thin Films by DC Magnetron Sputtering (II)Electrical Properties (DC Magnetron Sputtering에 의한 ATO 박막의 제조(II)전기적 특성)

  • Yoon, C.;Lee, H.Y.;Chung, Y.J.;Lee, K.H.
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.514-518
    • /
    • 1996
  • Sb doped SnO2(ATO: Antinomy doped Tin Oxide) thin films were prepared by a DC magnetron spttuering method using an oxide target and the electrical characteristics of ATO films were investigated. The experimen-tal conditions are as follows :Ar flow rate ; 0~100 sccm deposition tempera-ture ; 250~40$0^{\circ}C$ DC sputter powder ; 150~550W and sputteing pressure ; 2~7 mTorr, The thickness of depositied ATO films were 600$\AA$~1100 $\AA$ ranges. The resistivity of ATO films was decreased due to the increase of the crystallinity of ATO films with deposition temperature. The decrease of carrier concentration of films with the increase of oxygen flow rate and working pressure is responsible for the increase of resistivity. Increasing of sputtering power raised the resistivity of films by decreasing the carrier mobility.

  • PDF

A study on the thermochromism of $V_{1-x}M_xO_2$thin film ($V_{1-x}M_xO_2$박막의 thermochromism에 대한 연구)

  • Lee, Si-U;Lee, Mun-Hui
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.715-722
    • /
    • 1994
  • Thermochromic $Vo_{2}$ thin films for "smart windows" were prepared by electron beam evaporationmethod on a glass substrate and spectral transmittances were examined by spectrophotometer. Substratetemperature of $300^{\circ}C$ and annealing temperature of $400^{\circ}C$ were found to be effective to give athermochromism on $Vo_{2}$ thin film due to the crystallization of the thin film. Furthermore, annealing of$Vo_{2}$ thin film affected the spectral transmittance and reduced the transmittance significantly at wavelengthbelow 500nm.$V_{0.95}W_{0.05}O_{2}$ thin film doped by 5 atomic percent of W showed semiconductor-metal transition around 0$0^{\circ}V_{0.995}W_{0.005}O_{2}$thin film which contains 0.5 atomic percent Sn showed therrnochrornisrn when it was depositedat substrate temperature of $300^{\circ}C$ and annealed at $450^{\circ}C$ for 5 hours in argon gas. The transitiontemperature of the $V_{0.995}W_{0.005}O_{2}$ thin film was found to be about $25^{\circ}C$ and showed some hysterisis. and showed some hysterisis.

  • PDF

Preparation of thin films with light transmission conductive by electrospinning (Electrospinning을 통한 광투과 전도성 박막의 제조)

  • Lee, Kui-Young;Kim, Han-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.383-384
    • /
    • 2008
  • $SnO_2$ oxides are considerable interest for the development of transparent electrode, thin film resistor and gas sensors. Electrospinning is a class of nanofiber forming processes by which electrostatic forces are employed to control the production of nanofibers. In this study, antimony doped tin oxide thin films were prepared by electrospinning process. Effects of ATO doping concentration and applied voltage on electrical and light transmission properties were investigated.

  • PDF

ATO Thin Films Prepared by Reactive lout Beam Sputtering (반응성 이온빔 스퍼터링법에 의해 제조된 ATO박막)

  • 구창영;김경중;김광호;이희영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.361-364
    • /
    • 2000
  • Antimony doped tin oxide (ATO) thin films were deposited at room temperature by reactive ion-beam sputter deposition (IBSD) technique in oxidizing atmosphere utilizing Sb and Sn metal targets. Effect of Sb doping concentration, film thickness and heat treatment on electrical and optical properties was investigated. The thickness of as-deposited films was controlled approximately to 1500 $\AA$ or 2000$\AA$, and Sb concentration to 10.8 and 14.9 wt%, as determined by SEM and XPS analyses. Heat treatment was performed at the temperature from 40$0^{\circ}C$ to 80$0^{\circ}C$ in flowing $O_2$or forming gas. The resulting ATO films showed widely changing electrical resistivity and optical transmittance values in the visible spectrum depending on the composition, thickness and firing condition.

  • PDF