• Title/Summary/Keyword: Sn-Ag

Search Result 623, Processing Time 0.021 seconds

Electrical Contact Characteristics of Ag-SnO2 Materials with Increased SnO2 Content

  • Chen, Pengyu;Liu, Wei;Wang, Yaping
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2348-2352
    • /
    • 2017
  • The electrical contact characteristics including temperature rise, contact resistance and arc erosion rate of the $Ag-SnO_2$ materials with increased $SnO_2$ content were investigated during the repeated make-and-break operations. The thickness of arcing melting layer reduces by half and the arc erosion rate decreases more than 70% under 10000 times operations at AC 10 A with the $SnO_2$ content increasing from 15 wt.% to 45 wt.%, on one hand, temperature rise and contact resistance increase obviously but could be reduced to the same order of conventional $Ag-SnO_2$ materials by increasing the contact force. The microstructure evolution and the effect of $SnO_2$ on the arc erosion, contact resistance were analyzed.

Thermal Fatigue Life Prediction of ${\mu}BGA$ Solder Joint Using Sn-37mass%Pb Solder and Sn-3.5mass%Ag Lead-free Solder (Sn-37mass%Pb 솔더 및 Sn-3.5mass%Ag 무연솔더를 이용한 ${\mu}BGA$ 솔더접합부의 열피로수명 예측)

  • 신영의;이준환;하범용;정승부;정재필
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.406-412
    • /
    • 2001
  • This study is focussed on the numerical prediction of the thermal fatigue life of a ${\mu}BGA$(Micro Ball Grid Array) solder joint. Numerical method is used to perform three-dimensional finite element analysis for Sn-37mass%Pb. Sn-3.5mass%Ag solder alloys during the given thermal cycling. Strain values, along with the result of mechanical fatigue tests for solder alloys were then used to predict the solder joint fatigue life using the Coffin-Manson equation. In this study, a practical correlation for the prediction of the thermal fatigue life is suggested by using the dimensionless variable $\gamma$. As a result. it could be found that Sn-3.5mass%Ag has longer fatigue life than Sn-37mass%Pb in low cycle fatigue. In addition. the result with ${\gamm}ashow$a good agreement with the FEA results.

  • PDF

Tafel Characteristics by Electrochemical Reaction of SnAgCu Pb-Free Solder (SnAgCu계 무연솔더의 전기화학적 반응에 따른 타펠 특성)

  • Hong Won Sik;Kim Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.536-542
    • /
    • 2005
  • Recently European Council(EU) published the RoHS(restriction of the use of certain hazardous substances in electrical and electronic equipment) which is prohibit the use of Pb, Hg, Cd, $Cr^{+6}$, PBB or PBDE in the electrical and electronic equipments. So EU member States shall ensure that, from 1 July 2006, new electrical and electronic equipment put on the market does not contain 6 hazardous substances. The one of the most important in electronics manufacturing process is soldering. Soldering process use the chemical substances which are applied in fluxing and cleaning processes and it can generate the malfunction of electronics caused by corrosion in the fields conditions. Therefore this study researched on the polarization and Tafel properties of Sn40Pb and Sn3.0Ag0.5Cu(SAC) solder based on the electrochemical theory. We prepared SnPb specimens which was aged in $150^{\circ}C,\;180^{\circ}C$ for 15 minutes ana Sn3.0Ag0.5Cu specimens that was aged in $180^{\circ}C,\;220^{\circ}C$ for 10 minutes. Experimental polarization curves were measured in distilled ionized water and $3.5 wt\%$, 1 mole NaCl electrolyte of $40^{\circ}C$, pH 7.5. Ag/AgCl and graphite were utilized by reference and counter electrode, respectively. To observe the electrochemical reaction, polarization test was conducted from -250 mV to +250 mV. From the polarization curves that were composed of anodic and cathodic curves, we obtained Tafel slop, reversible electrode potential(Ecorr) and exchange current density(Icorr). In these results, corrosion rate for two specimen were compared Sn3.0Ag0.5Cu with SnPb solders

Property changes of Sintered Ag-SnO$_2$contact by Oxide addition (산화물 첨가에 의한 Ag-SnO$_2$contact by Oxide addition)

  • 한세원;이동윤;조해룡;이희웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.52-55
    • /
    • 1989
  • The properties of sintered Ag-SnO$_2$contacts which contain the second oxide were investigated with hardeness, workability, electrical conductivity and are erosion. Ag-SnO$_2$contacts containing ZnO or Bi$_2$O$_3$have most excellent workability and arc erosion endurance.

  • PDF

Lead-Free Solders and Processing Issues Relevant to Microelectronics Packaging

  • Kang, Sung K.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.147-163
    • /
    • 2003
  • European Union bans the usage of Pb in electronics from July 1 st, 2006. The Near-eutectic Sn-Ag-Cu alloys are the leading candidate Pb-free solders (for SMT card assembly). .The microstructure of Sn-Ag-Cu alloys is discussed in terms of solidification, composition and cooling rate. Methods of controlling Ag3Sn plates are discussed. .Thermo-mechanical fatigue behaviors of Sn-Ag-Cu solder joints are reviewed. Tin pest, whisker growth, electromigration of Pb-free solders are discussed.

  • PDF

Comparative Study on Operational Speeds Based on Contact Material of Magnetic Contactor (전자접촉기의 접촉소재에 따른 동작속도 비교 연구)

  • Yeong-Jin Goh
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.246-250
    • /
    • 2023
  • Magnetic Contactor (MC) research traditionally focuses on arc erosion influenced by contact material. In recent times, with an increasing demand for efficient utilization of DC devices and swift processing, the operational speed of MCs has become paramount. While AgSnO2 generally displays superior response characteristics to AgCdO, this understanding remains material-specific. In this paper, complete MCs were constructed, and the operational speeds were validated based on the two materials.

Characteristics of Joint Between Ag-Pd Thick Film Conductor and Solder Bump and Interfacial Reaction (Ag-Pd 후막도체와 솔더범프 사이의 접합특성 및 계면반응)

  • 김경섭;한완옥;이종남;양택진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • The requirements for harsh environment electronic controllers in automotive applications have been steadily becoming more and more stringent. Electronic substrate technologists have been responding to this challenge effectively in an effort to meet the performance, reliability and cost requirements. An effect of the plasma cleaning at the ECM(Engine Control Module) alumina substrate and the intermetallic compound layer between Sn-37wt%Pb solder and pad joints after reflow soldering has been studied. Organic residual carbon layer was removed by the substrate plasma cleaning. So the interfacial adhesive strength was enhanced. As a result of AFM measurement, conductor pad roughness were increased from 304 nm to 330 nm. $Cu_6/Sn_5$ formed during initial reflow process at the interface between TiWN/Cu pad and solder grew by the succeeding reflow process, so the grains became coarse. A cellular-shaped $Ag_3Sn$ was observed at the interface between Ag-Pd conductor pad and solder. The diameters of the $Ag_3Sn$ grains ranged from about 0.1∼0.6 $\mu\textrm{m}$. And a needle-shaped was also observed at the inside of the solder.

  • PDF