• Title/Summary/Keyword: Sn sensitization

Search Result 10, Processing Time 0.026 seconds

A Study on Rinsing Effects of Sn Sensitization and Pd Activation Processes for Uniform Electroless Plating (무전해 도금에서 Sn 민감화와 Pd 활성화 공정의 세척 효과에 대한 연구)

  • Seong-Jae, Jeong;Mi-Se, Chang;Jae-Won, Jeong;Sang-Sun, Yang;Young-Tae, Kwon
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.511-516
    • /
    • 2022
  • Electroless plating is widely utilized in engineering for the metallization of insulator substrates, including polymers, glass, and ceramics, without the need for the application of external potential. Homogeneous nucleation of metals requires the presence of Sn-Pd catalysts, which significantly reduce the activation energy of deposition. Therefore, rinsing conducted during Sn sensitization and Pd activation is a key variable for the formation of a uniform seed layer without the lack or excess of catalysts. Herein, we report the optimized rinsing process for the functionalization of Sn-Pd catalysts, which enables the uniform FeCo metallization of the glass fibers. Rinsing enables good deposition of the FeCo alloy because of the removal of excess catalysts from the glass fiber. Concurrently, excessive rinsing results in a complete removal of the Sn-Pd nucleus. Collectively, the comprehensive study of the proposed nanomaterial preparation and surface science show that the metallization of insulators is a promising technology for electronics, solar cells, catalysts, and mechanical parts.

Fabrication and Characteristics of High-performance Doped-$SnO_2$ Thin Films for Explosive Gas Sensor

  • Chwa, Sang-Ok;Park, Hee-Chan;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.83-88
    • /
    • 1996
  • Long term stability, sensitization in air, and gas sensing behaviors of tin oxide films were investigated with doping of antimony and palladium. The tin oxide films were prepared on a Corning glass by reactive rf sputtering method and tested for detection of hydrogen gas. Sb-doping improved a long-term stability in the base resistance of $SnO_2$ film sensor. A small amount of Pd doping caused the optimum sensor operating temperature to reduce and also enhanced the gas sensitivity, compared with the undoped $SnO_2$ film. Gas sensitivity depended largely on the film thickness. The important sensitization reactions for sensor operating were $(O_{2ads})+e^-\;{\rightarrow}\;2(O_{ads})^-$ on the surface of $SnO_2$ film at elevated temperature in air and a followed reaction of hydrogen atoms with $(O_{ads})^-$ ions.

  • PDF

Gas Sensitization of Tin Oxide Film by Resistance

  • Chwa, Sang-Ok;Park, Hee-Chan;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.183-188
    • /
    • 1998
  • Gas sensitizations of tin oxide film were investigated by measuring the change of film resistance in various gas atmospheres such as $N_2,\; O_2,\; H_2O$. The main test sample, polycrystalline $SnO_2$ film containing small Sb as a dopant was prepared by a sputtering technique and showed a long term stability in base resistance and thus, in gas sensitivity. The adsorption of oxygen on the film surface as a type of $(O_{ads})$ at the temperature of around $300^{\circ}C$ played important roles in sensor operating mechanism. The roles were ⅰ) the increase of base resistance in ambient air, which consequently lead to high sensitivity and ⅱ) the promotion of fast recovery. The reaction of hydrogen gas with the already adsorbed $(O_{ads})$ ions was considered as a decisive sensitization mechanism of tin oxide film. However, the dissociation of hydrogen molecules on film surface, by direct donation of electron to film also took a major part in the sensitization. The effect of humidity on gas sensitization was found to be negligible at the sensor operating temperature of around $300^{\circ}C$.

  • PDF

Behavior of Tin and Palladium for Electroless Plating on bariumtitanate ceramics.(Part 1:Study with Electron Spertroscopy for Chemical Analysis) (티탄산바륨세라믹의 무전해도금을 위한 Sn 및 Pb 촉매의 거동 (제1부: Electron Spertroscopy for Chemical Analysis에 의한 연구))

  • 박광자
    • Journal of Surface Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.144-149
    • /
    • 1990
  • X-ray phtoelectron spectroscopy has been used to obtain information on the behavior of the Pb catalysis and Sn sensitizer on the bariumtitanate ceramic substrate. SnF2 sensitization and PbCl2 activation process are used are used to prepare nonconductive substrate for electroless plating. This method of surface preparation is compared to Pd-Sn mixed solu tions and Ag pretreatment process. In all the case, the bonding energy is about 487.5eV for Sn and 336.5~337.5eV for Pb.

  • PDF

Excellent Carbon Monoxide Sensing Performance of Au-Decorated SnO2 Nanofibers

  • Kim, Jae-Hun;Zheng, Yifang;Mirzaei, Ali;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.741-750
    • /
    • 2016
  • Nanofibers(NFs), because of their high surface area and nanosized grains, have appropriate morphologies for use in chemiresistive-type sensors for gas detection applications. In this study, a highly sensitive and selective CO gas sensing material based on Au-decorated $SnO_2$ NFs was fabricated by electrospinning. $SnO_2$ NFs were synthesized by electrospinning and subsequently decorated with various amounts of Au nanoparticles(NPs) by sputtering; this was followed by thermal annealing. Different characterizations showed the successful formation of Au-decorated $SnO_2$ NFs. Gas sensing tests were performed on the fabricated sensors, which showed bell-shaped sensing behavior with respect to the amount of Au decoration. The best CO sensing performance, with a response of ~20 for 10 ppm CO, was obtained at an optimized amount of Au (2.6 at.%). The interplay between Au and $SnO_2$ in terms of the electronic and chemical sensitization by Au NPs is responsible for the great improvement in the CO sensing capability of pure $SnO_2$ NFs, suggesting that Au-decorated $SnO_2$ NFs can be a promising material for fabricating highly sensitive and selective chemiresistive-type CO gas sensors.

Photocurrents in the $SnO_2$ Photoelectrochemical Cell Sensitized by Rhodamine B ($SnO_2$광전기화학 셀에서 Rhodamine B에 의한 광전류)

  • Hyun-Jin Min;Gi-Bum Kim;Jeong-A Yu;Kang-Jin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.2
    • /
    • pp.213-219
    • /
    • 1993
  • The electrochemical spectral sensitization of $SnO_2$ electrodes with rhodamine B was studied. Photocurrent was measured in the presence of a variety of supersensitizers including ascorbic acid and KI. In the presence of ascorbic acid, the increase in the concentration of ascorbic acid, pH of the solution, or the potential applied to $SnO_2$ up to 0.6 V vs. SCE enhanced the photocurrent. However, ascorbic acid produced considerably high dark current due to its low reduction potential. On the other hand, KI produced low but stable photocurrent. The results, together with the solvent effect on the photocurrent, were taken into account to elucidate the mechanism of photosensitization in the presence of ascorbic acid or KI.

  • PDF

Photosensitization of $SnO_2$ Electrode by Eosin B in Acetonitrile (아세토니트릴에서 Eosin B에 의한 $SnO_2$ 전극의 감광화)

  • Kang Man-Koo;Yoon Kil-Joong;Kim Kang-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.75-80
    • /
    • 1992
  • The electrochemical spectral sensitization of a $SnO_2$ electrode with eosin B, a Xanthene dye, has been studied in acetonitrile. Measurements of the photocurrent have been carried out in the presence of supersensitizers such as thiourea, 1-allyl-2-thiourea, NaSCN, and NaI. The magnitude of the supersensitized photocurrent was greater than that of the sensitized photocurrent for all of the supersensitizers studied. However, the long time span of irradiation causes a significant decrease of the supersensitized photocurrent as well as the absorbance. These results, together with infrared spectra and fluorescence spectra, are taken into account to elucidate the mechanism of photoreaction between eosin B and supersensitizers in acetonitrile.

  • PDF

Silver Activation Process Utilizing Permanganate Oxidation for Electroless Copper Plating on PET (과망간산염의 산화 과정을 응용한 PET 위 무전해 도금의 은 활성화 공정)

  • Lee, Hong-Gi;Heo, Jin-Yeong;Im, Yeong-Saeng;Lee, Geon-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.181-182
    • /
    • 2015
  • 본 실험에서는 PET 위 무전해 도금을 위한 대안 공정 개발을 목적으로 은(Ag)와 과망간산염($MnO_4{^-}$)를 사용하여 기존에 일반적으로 사용된 Sn/Pd의 Sensitization과 Activation process를 대체하는 기술을 연구했다. Palladium(Pd)의 경우 공정비용에서 높은 부분을 차지하기 때문에 이를 대신하여 Ag를 사용했으며, PET 표면의 전처리를 위해 Ultra Violet과 과망간 산염을 이용하여 표면의 친수성을 높였다. 과망간산염을 사용하여 표면을 전처리하는 과정에서 이산화망간($MnO_2$)과 알코올 작용기가 생성되는데 Ag activation 단계에서 촉매 생성에 중간 매개체 역할을 하는 것으로 사료된다. 이와 같은 결론을 도출 하기 위해서 표면 위 Ag의 화학적 구조 및 상 분석을 위해 XPS와 TEM이 사용되었으며 표면에서 Ag는 Ag-O와 같은 Silver oxide의 형태와 Ag-Mn-O와 같은 Compound로 무전해 도금을 위한 촉매 역할 하는 것으로 판단된다.

  • PDF

A Study on the Preparation of 5(6)-Carboxyflurescein-supported Phospholipid Liposomes and Evaluation of Bacterial Sensing Ability (5(6)-Carboxyflurescein을 담지한 인지질 리포좀의 제조 및 박테리아 센싱 능력 평가에 대한 연구)

  • Han, Minho;Jeon, Jaewoo;Lee, Junyoung;Shin, Eunsuk;Kim, Woojin;Kim, Samsoo
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.338-347
    • /
    • 2021
  • In the case of occlusive dressings currently used in dressings for burn treatment, it is impossible to confirm the replacement time, so replacement is delayed, resulting in additional infection. To solve this problem, liposomes capable of bacterial sensing were prepared using 5(6)-Carboxyfluorescein, Phosphatidylcholine, 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine, Cholesterol, and 10,12-Tricosadiynoic acid. In this study, evaluation of changes in drug encapsulation rate in liposomes according to changes in three types of phosphatidylcholine phospholipids during liposome production, high-performance phosphatidylcholine phospholipids selected through vesicle size analysis, low and high temperature stability evaluation, bacterial sensitization ability evaluation, animals cell responses were assessed.

Effects of Acid Treatment of Carbon on Electroless Copper Plating (피도금 탄소재의 산처리가 무전해 동도금에 미치는 영향)

  • Shin, Ari;Han, Jun Hyun
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.3
    • /
    • pp.265-273
    • /
    • 2016
  • The effects of surface modification by nitric acid on the pre-treatment of electroless copper plating were investigated. Copper was electroless-plated on the nitric acid treated graphite activated by a two-step pre-treatment process (sensitization + activation). The chemical state and relative quantities of the various surface species were determined by X-ray photoelectron spectroscopy (XPS) after nitric acid modification or pre-treatment. The acid treatment increased the surface roughness of the graphite due to deep and fine pores and introduced the oxygen-containing functional groups (-COOH and O-C=O) on the surface of graphite. In the pre-treatment step, the high roughness and many functional groups on the nitric acid treated graphite promoted the adsorption of Sn and Pd ions, leading to the uniform adsorption of catalyst ($Pd^0$) for Cu deposition. In the early stage of electroless plating, a lot of tiny copper particles were formed on the whole surface of acid treated graphite and then homogeneous copper film with low variation in thickness was formed after 30 min.