• Title/Summary/Keyword: Sn diffusion

Search Result 133, Processing Time 0.022 seconds

A new approach for calculation of the neutron noise of power reactor based on Telegrapher's theory: Theoretical and comparison study between Telegrapher's and diffusion noise

  • Bahrami, Mona;Vosoughi, Naser
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.681-688
    • /
    • 2020
  • The telegrapher's theory was used to develop a new formulation for the neutron noise equation. Telegrapher's equation is supposed to demonstrate a more realistic approximation for neutron transport phenomena, especially in comparison to the diffusion theory. The physics behind such equation implies that the signal propagation speed is finite, instead of the infinite as in the case of ordinary diffusion. This paper presents the theory and results of the development of a new method for calculation of the neutron noise using the telegrapher's equation as its basis. In order to investigate the differences and strengths of the new method against the diffusion based neutron noise, a comparison was done between the behaviors of two methods. The neutron noise based on SN transport considered as a precision measuring point. The Green's function technique was used to calculate the neutron noise based on telegrapher's and diffusion methods as well as the transport. The amplitude and phase of Green's function associated with the properties of the medium and frequency of the noise source were obtained and their behavior was compared to the results of the transport. It was observed, the differences in some cases might be considerable. The effective speed of propagation for the noise perturbations were evaluated accordingly, resulting in considerable deviations in some cases.

Effects of Nano-sized Diamond on Wettability and Interfacial Reaction for Immersion Sn Plating

  • Yu, A-Mi;Kang, Nam-Hyun;Lee, Kang;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.59-63
    • /
    • 2010
  • Immersion Sn plating was produced on Cu foil by distributing nano-sized diamonds (ND). The ND distributed on the coating surface broke the continuity of Sn-oxide layer, therefore leading to penetrate the molten solder through the oxide and retarding the wettability degradation during a reflow process. Furthermore, the ND in the Sn coating played a role of diffusion barrier for Sn atoms and decreased the growth rate of intermetallic compound ($Cu_6Sn_5$) layer during the solid-state aging. The study confirmed the importance of ND to improve the wettability and reliability of the Sn plating. Complete dispersion of the ND within the immersion Sn plating needs to be further developed for the electronic packaging applications.

A Study on the Soldering Characteristic of 4 Bus Bar Crystalline Silicon Solar Cell on Infrared Lamp and Hot Plate Temperature Control (적외선 램프 및 핫 플레이트 온도 제어를 통한 4 Bus Bar 결정질 실리콘 태양전지 솔더링 특성에 관한 연구)

  • Lee, Jung Jin;Son, Hyoung Jin;Kim, Seong Hyun
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.83-88
    • /
    • 2017
  • The growth of intermetallic compounds is an important factor in the reliability of solar cells. Especially, the temperature change in the soldering process greatly affects the thickness of the intermetallic compound layer. In this study, we investigated the intermetallic compound growth by Sn-diffusion in solder joints of solar cells. The thickness of the intermetallic compound layer was analyzed by IR lamp power and hot plate temperature control, and the correlation between the intermetallic compound layer and the adhesive strength was confirmed by a $90^{\circ}$ peel test. In order to investigate the growth of the intermetallic compound layer during isothermal aging, the growth of the intermetallic compound layer was analyzed at $85^{\circ}C$ and 85% for 500 h. In addition, the activation energy of Sn was calculated. The diffusion coefficient of the intermetallic compound layer was simulated and compared with experimental results to predict the long-term reliability.

Fabrication of 3-dimensional Sn-C Composites Using Microsphere (미소구체를 이용한 3차원 Sn-C 복합체 제조)

  • Park, Bo-Gun;Kim, Seuk-Buom;Park, Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.741-746
    • /
    • 2010
  • Three-dimensionally ordered macro-porous Sn-C composites were prepared by using polystyrene microsphere as a template. The Sn-C composites were composed of well-interconnected pore with circular shape and wall structure with wall thickness of a few tens of nano-meters. This porous three-dimensional structure is readily and uniformly accessible to the electrolyte, which facilitates lithium ion diffusion during charge-discharge reactions. The wall thickness of the composites was increased as the increase of Sn content of the composite. From EDS analysis, it is confirmed that the Sn was dispersed uniformly in Sn-C composites. The capacity was increased as the Sn content increased, which is due to Sn anode with high capacity. The Sn-C composites with high Sn content showed superior cyclic performances. Such enhancement is ascribed to the thick wall thickness and small pore size of the sample with high Sn content. The Sn-C composite with Sn 30 wt% showed relatively high capacity and stable cycle life, however, the stability of the 3-dimensional structure should be enhanced by further work.

Intermetallic Compound Growth Characteristics of Cu/Ni/Au/Sn-Ag/Cu Micro-bump for 3-D IC Packages (3차원 적층 패키지를 위한 Cu/Ni/Au/Sn-Ag/Cu 미세 범프 구조의 열처리에 따른 금속간 화합물 성장 거동 분석)

  • Kim, Jun-Beom;Kim, Sung-Hyuk;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.59-64
    • /
    • 2013
  • In-situ annealing tests of Cu/Ni/Au/Sn-Ag/Cu micro-bump for 3D IC package were performed in an scanning electron microscope chamber at $135-170^{\circ}C$ in order to investigate the growth kinetics of intermetallic compound (IMC). The IMC growth behaviors of both $Cu_3Sn$ and $(Cu,Ni,Au)_6Sn_5$ follow linear relationship with the square root of the annealing time, which could be understood by the dominant diffusion mechanism. Two IMC phases with slightly different compositions, that is, $(Cu,Au^a)_6Sn_5$ and $(Cu,Au^b)_6Sn_5$ formed at Cu/solder interface after bonding and grew with increased annealing time. By the way, $Cu_3Sn$ and $(Cu,Au^b)_6Sn_5$ phases formed at the interfaces between $(Cu,Ni,Au)_6Sn_5$ and Ni/Sn, respectively, and both grew with increased annealing time. The activation energies for $Cu_3Sn$ and $(Cu,Ni,Au)_6Sn_5$ IMC growths during annealing were 0.69 and 0.84 eV, respectively, where Ni layer seems to serve as diffusion barrier for extensive Cu-Sn IMC formation which is expected to contribute to the improvement of electrical reliability of micro-bump.

Growth Kinetics of Intermetallic Compound on Sn-3.5Ag/Cu, Ni Pad Solder Joint with Isothermal Aging (등온시효에 따른 Sn-3.5Ag 솔더 접합부의 금속간 화합물 성장에 관한 연구)

  • 이인영;이창배;정승부;서창제
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.97-102
    • /
    • 2002
  • The growth kinetics of intermetallic compound layers formed between the eutectic Sn-3.5Ag solder and the Cu and Ni/Cu pad by solid stateisothermal aging were examined. The interfacial reaction between the eutectic Sn-3.5Ag solder and the Cu and Ni/Cu pad was investigated at 70, 120, 150, $170^{\circ}C$ for various times. The intermetallic compound layer was composed of two phase: $Cu_6Sn_5$(${\varepsilon}-phase$) adjacent to the solder and $Cu_6Sn_5$(${\varepsilon}-phase$) adjacent to the copper and on solder/Ni pad the intermetallic compound layer was $Ni_3Sn_4$. Because the values of time exponent(n) have approximately 0.5, the layer growth of the intermetallic compound was mainly controlled by volume diffusion over the temperature range studied. The apparent activation energy for layer growth of total Cu-Sn($Cu_6Sn_5 + Cu_6Sn$), $Cu_6Sn_5$, $Cu_3Sn$ and $Ni_3Sn_4$ intermetallic compound were 64.82kJ/mol, 48.53kJ/mol, 89.06kJ/mol and 71.08kJ/mol, respectively.

Network analysis of issue diffusion on the sanitary pad cancer-causing agent via Twitter and Youtube (트위터와 유튜브를 통해 확산된 생리대 발암물질 이슈에 대한 네트워크 분석)

  • Hong, Juhyun
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.15-26
    • /
    • 2018
  • This study focused on the difference of the volume of sanitory pad issue and The aim of this study is to explore the relationship between the characteristics of SNS and the diffusion of issue in the process of crisis issue. SNS is categorized into communication diffusion, communication restriction,, diffusion, restriction base on the media interactivity and the user interactivity, In case of Twitter, media interactivity is low and user interactivity is low. In case of Youtube, media interactivity and user interactivity are all high. Crisiss issue is interactively diffused via Youtube compared to via Twitter. There was a negative public opinion in social media even if the government and the manufacturer said that there was no harm in the sanitary goods. In conclusion, this study highlights the importance of social media environment in the diffusion of information. The government prepared for the use of SNS in crisis because there was a negative opinion on the government and the manufacturer via SNS.

Effects of Electrodeposition condition on the fracture characteristics of 80Sn-20Pb electrodeposits aged at 15$0^{\circ}C$ (15$0^{\circ}C$에서 시효처리한 80Sn-20Pb 합금 도금층의 파괴특성에 전착조건이 미치는 영향)

  • 김정한;서민석;권혁상
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.5
    • /
    • pp.292-302
    • /
    • 1994
  • Alloy deposits of 80Sn-20Pb, electroplated on Cu-based leadframe alloy from an organic sulfonate bath were aged at $150^{\circ}C$ to form intermetallic phases between substrate and deposit, and effects of the deposit morphology, influenced by deposition conditions, on the fracture resistance of the 80Sn-20Pb deposit aged at $150^{\circ}C$ were examined. The growth rate of intermetallic compound layer on aging depended on the microstructure of deposit ; it was fastest in deposit formed using pulse current in bath without grain refining additive, but slowest in deposit formed using dc current in bath containing grain refining additive in spite of similar structure with equivalent grain size. The grain refining additive incorporated in electrodeposit appears to inhibit diffusion of atoms on aging, resulting in slow growth of intermetallic layer in the thickness direction but substantial growth in the lateral one. Density of surface cracks that were occurring when samples were subjected to the $90^{\circ}$-bending test increased with increasing the thickness of intermatallic layer on aging. For the same aged samples, the surface crack density of the sample electrodeposited from a bath containing the grain refining additive was the least due to the inhibiting effect of the additive incorporated into the deposit during electrolysis on atomic diffusion.

  • PDF