DOI QR코드

DOI QR Code

Intermetallic Compound Growth Characteristics of Cu/Ni/Au/Sn-Ag/Cu Micro-bump for 3-D IC Packages

3차원 적층 패키지를 위한 Cu/Ni/Au/Sn-Ag/Cu 미세 범프 구조의 열처리에 따른 금속간 화합물 성장 거동 분석

  • Kim, Jun-Beom (School of Materials Science and Engineering, Andong National University) ;
  • Kim, Sung-Hyuk (School of Materials Science and Engineering, Andong National University) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
  • 김준범 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 김성혁 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Received : 2013.06.12
  • Accepted : 2013.06.28
  • Published : 2013.06.30

Abstract

In-situ annealing tests of Cu/Ni/Au/Sn-Ag/Cu micro-bump for 3D IC package were performed in an scanning electron microscope chamber at $135-170^{\circ}C$ in order to investigate the growth kinetics of intermetallic compound (IMC). The IMC growth behaviors of both $Cu_3Sn$ and $(Cu,Ni,Au)_6Sn_5$ follow linear relationship with the square root of the annealing time, which could be understood by the dominant diffusion mechanism. Two IMC phases with slightly different compositions, that is, $(Cu,Au^a)_6Sn_5$ and $(Cu,Au^b)_6Sn_5$ formed at Cu/solder interface after bonding and grew with increased annealing time. By the way, $Cu_3Sn$ and $(Cu,Au^b)_6Sn_5$ phases formed at the interfaces between $(Cu,Ni,Au)_6Sn_5$ and Ni/Sn, respectively, and both grew with increased annealing time. The activation energies for $Cu_3Sn$ and $(Cu,Ni,Au)_6Sn_5$ IMC growths during annealing were 0.69 and 0.84 eV, respectively, where Ni layer seems to serve as diffusion barrier for extensive Cu-Sn IMC formation which is expected to contribute to the improvement of electrical reliability of micro-bump.

3차원 적층 패키지를 위한 Cu/Ni/Au/Sn-Ag/Cu 미세 범프의 열처리에 따른 금속간 화합물 성장 거동을 분석하기 위하여 in-situ SEM에서 $135^{\circ}C$, $150^{\circ}C$, $170^{\circ}C$의 온도에서 실시간 열처리 실험을 진행하였다. 실험 결과 금속간 화합물의 성장 거동은 열처리시간이 경과함에 따라 시간의 제곱근에 직선 형태로 증가하였고, 확산에 의한 성장이 지배적인 것을 확인 할 수 있었다. Ni/Au 층의 존재로 인해 Au의 확산으로 복잡한 구조의 금속간 화합물이 생성 된 것을 확인할 수 있다. 활성화 에너지는 $Cu_3Sn$의 경우 0.69eV, $(Cu,Ni,Au)_6Sn_5$경우 0.84 eV로 Ni이 포함된 금속간 화합물이 더 높은 것을 확인 하였으며, 확산 방지층 역할을 하는 Ni층에 의해 금속간 화합물 성장이 억제됨에 따라 신뢰성이 향상 될 것으로 사료된다.

Keywords

References

  1. D. H. Lee, B. M. Chung and J. Y. Huh, "Retardation of Massive Spalling by Palladium Layer Addition to Surface Finish", Kor. J. Met. Mater., 48, 1041 (2010). https://doi.org/10.3365/KJMM.2010.48.11.1041
  2. S. C. Park, K. J. Min, K. H. Lee, Y. S. Jeong and Y. B. Park, "Effect of annealing on the interfacial adhesion energy between electroless-plated Ni and polyimide", Met. Mater. Int., 17, 111 (2011). https://doi.org/10.1007/s12540-011-0215-z
  3. E. J. Jang, J. W. Kim, B. Kim, T. Matthias and Y. B. Park, "Annealing temperature effect on the Cu-Cu bonding energy for 3D-IC integration", Met. Mater. Int., 17, 105 (2011). https://doi.org/10.1007/s12540-011-0214-0
  4. K. N. Chen, C. S. Tan, A. Fan and R. Reif, "Abnormal contact resistance reduction of bonded copper interconnects in threedimensional integration during current stressing", Appl.Phys. Lett., 86, 011903 (2005). https://doi.org/10.1063/1.1844609
  5. B. J. Kim, G. T. Lim, J. D. Kim, K. W. Lee, Y.B. Park, H. Y. Lee and Y. C. Joo, "Intermetallic Compound Growth and Reliability of Cu Pillar Bumps Under Current Stressing", J. Electron. Mater., 39, 2281 (2010). https://doi.org/10.1007/s11664-010-1324-z
  6. G. T. Lim, B. J. Kim, K. W. Lee, J. D. Kim, Y. C.Joo and Y. B. Park, "Temperature Effect on Intermetallic Compound Growth Kinetics of Cu Pillar/Sn Bumps", J. Electron. Mater., 38, 2228 (2009). https://doi.org/10.1007/s11664-009-0922-0
  7. M. H. Jeong, G. T. Lim, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo and Y. B. Park, "Interfacial Reaction Effect on Electrical Reliability of Cu Pillar/Sn Bumps", J. Electron. Mater., 39, 2368 (2010). https://doi.org/10.1007/s11664-010-1345-7
  8. B. J. Kim, G. T. Lim, J. D. Kim, K. W. Lee, Y.B. Park, H. Y. Lee and Y. C. Joo, "Microstructure Evolution in Cu Pillar/ Eutectic SnPb Solder System during Isothermal Annealing", Met. Mater. Int., 15, 815 (2009). https://doi.org/10.1007/s12540-009-0815-4
  9. G. T. Lim, J. H. Lee, B. J. Kim, K. W. Lee, M. J. Lee, Y. C. Joo and Y. B. Park, "Effect of Thermal Aging on the Intermetallic compound Growth kinetics in the Cu pillar bump", J. Microelectron. Packag. Soc., 14(4), 15 (2007).
  10. M. H. Jeong, J. W. Kim, B. H. Kwak, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo and Y. B. Park, "Intermetallic Compound Growth Characteristics of Cu/thin Sn/Cu Bump for 3-D Stacked IC Package", Kor. J. Met. Mater., 49, 180 (2011). https://doi.org/10.3365/KJMM.2011.49.2.180
  11. J. W. Nah, J. O. Suh and K. N. Tu, "Electromigration in flip chip solder joints having a thick Cu column bump and a shallow solder interconnect", J. Appl. Phys., 100, 123513 (2006). https://doi.org/10.1063/1.2402475
  12. J. W. Kim and S. B. Jung, "Failure mechanism of Pb-bearing and Pb-free solder joints under high-speed shear loading", Met. Mater. Int., 16, 7 (2010). https://doi.org/10.1007/s12540-010-0007-x
  13. J. M. Kim, J. S. Park and K. T. Kim, "Electrical conductivity and tensile properties of severely cold-worked Cu-P based alloy sheets", Met. Mater. Int., 16, 657 (2010). https://doi.org/10.1007/s12540-010-0821-1
  14. Y. M. Kim, K. M. Harr and Y. H. Kim, "Mechanism of the Delayed Growth of Intermetallic Compound at the Interface between Sn-4.0Ag-0.5Cu and Cu-Zn Substrate", Electron. Mater. Lett., 6, 151 (2010). https://doi.org/10.3365/eml.2010.12.151
  15. B. H. Lee, J. Park, S. J. Jeon, K. W. Kwon and H. J. Lee, "A Study on the Bonding Process of Cu Bump/Sn/Cu Bump Bonding Structure for 3D Packaging Applications", J. Electrochem. Soc., 157, H420 (2010). https://doi.org/10.1149/1.3301931
  16. Y. S. Lai, Y. T. Chiu, and J. Chen, "Electromigration Reliability and Morphologies of Cu Pillar Flip-Chip Solder Joints with Cu Substrate Pad Metallization", J. Elecron. Mater., 37, 1624 (2008). https://doi.org/10.1007/s11664-008-0515-3
  17. S. H. Kim, J. M. Kim, S. H. Yoo and Y. B. Park, "Effects of PCB Surface Finishes on Mechanical Reliability of Sn-1.2Ag-0.7Cu-0.4In Pb-free Solder Joint", J. Microelectron. Packag. Soc., 19(4), 57 (2012).
  18. C. W. Chang, C. E. Ho, S. C. Yang and C. R. Kao, "Kinetics of AuSn4 Migration in Lead-Free Solders", J. Elecron.Mater., 35, 11(2006) https://doi.org/10.1007/s11664-006-0218-6
  19. Y. Wang, S.H Chae, R. Dunne, Y. Takahashi, K. Mawatari, P. Steinmann, T. Bonifield, T. Jiang, J. Im and P. S. Ho, "Effect of Intermetallic Formation on Electromigration Reliability of TSV-Microbump Joints in 3D Interconnect", Proc., 62th Electronic Components and Technology Confer ence(ECTC), San Diego, 319, IEEE CPMT(2012).
  20. H. T. Chen, C. Q. Wang, C. Yan, M. Y. Li and Y. Huang, "Cross-Interaction of Interfacial Reactions in Ni (Au/Ni/Cu)- SnAg-Cu Solder Joints during Reflow Soldering and Thermal Aging", J. Elecron.Mater., 36, 1 (2007). https://doi.org/10.1007/s11664-006-0033-0
  21. K. N. Tu, "Interdiffusion and Reaction in Bimetallic Cu-Sn Thin Films", Acta Metall. 21, 347 (1973). https://doi.org/10.1016/0001-6160(73)90190-9
  22. M. H. Jeong, J. W. Kim, B. H. Kwak and Y. B. Park, "Effects of annealing and current stressing on the intermetallic compounds growth kinetics of Cu/thin Sn/Cu bump", Microelectron. Eng., 89, 50 (2009).

Cited by

  1. Processing and warpage evaluation of Package-on-Packages with various epoxy molding compounds vol.10, pp.2, 2014, https://doi.org/10.1007/s13391-014-8004-8