• 제목/요약/키워드: Sn addition

검색결과 585건 처리시간 0.036초

NH3 Sensing Properties of SnO Thin Film Deposited by RF Magnetron Sputtering

  • Vu, Xuan Hien;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.272-272
    • /
    • 2014
  • SnO thin films, 100 nm in thickness, were deposited on glass substrates by RF magnetron sputtering. A stack structure of $SnO_2/SnO$, where few nanometers of $SnO_2$ were determined on the SnO thin film by X-ray photoelectron spectroscopy. In addition, XPS depth profile analysis of the pristine and heat treated thin films were introduced. The electrical behavior of the as-sputtered films during the annealing was recorded to investigate the working conditions for the SnO sensor. Subsequently, The NH3 sensing properties of the SnO sensor at operating temperature of $50-200^{\circ}C$ were examined, in which the p-type semiconducting sensing properties of the thin film were noted. The sensor shows good sensitivity and repeatability to $NH_3$ vapor. The sensor properties toward several gases like $H_2S$, $CH_4$ and $C_3H_8$ were also introduced. Finally, a sensing mechanism was proposed and discussed.

  • PDF

$SnO_2$박막저항의 전기적 특성에 미치는 첨가제의 영향 (Effect of Dopants on Electrical Properties of $SnO_2$Thin Film Resistors)

  • 구본급;강병돈
    • 한국전기전자재료학회논문지
    • /
    • 제13권8호
    • /
    • pp.658-666
    • /
    • 2000
  • Sb and Sb-Fe doped SnO$_2$film resistors were prepared by spray pyrolysis technique. The effects of Sb and Sb-Fe addition on TCR and electrical properties of SnO$_2$film resistors were studied. Also the dependence of electrical properties on the substrate temperature and substrate-nozzle distance was investigated. The Sn-Sb system with 7.9 mol% SbCl$_3$(STO-406) and Sn-Sb-Fe systems with 7.3 mol% SbCl$_3$+7.3 mol% FeCl$_3$(STO-407) and with 3.4 mol% SbCl$_3$+7.7mol% FeCl$_3$(STO-408) were prepared. Both of the systems Sn-Sb and Sn-Sb-Fe represented nonlinearity of TCR with temperature. As the amount of Fe increased TCR was shifted to positive direction. Decreasing Sb or increasing Fe caused resistivity to increase. Also increasing Fe caused the crystallization degree of rutile structure in SnO$_2$film to decrease. The electrical resistivity decreased with increasing substrate temperature The resistivity decreased with increasing substrate-nozzle distance in the ranges from 15 to 25 cm and increased rapidly at the distance over 25cm.

  • PDF

Zr-1.0Nb-xSn 합금의 부식거동에 대한 Sn첨가의 영향 (Effect of Sn Addition on Corrosion Behavior of Zr-1.0 Nb-xSn Alloy System)

  • 이명호;최병권;정용환
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.369-374
    • /
    • 2002
  • To investigate the corrosion behavior of Zr-1.0Nb-xSn (x=1.0, 1.5, 2.0 and 2.5wt. %)alloy system, the corrosion tests of Zr-1.0Nb-xSn alloys were carried out in steam at $400^{\circ}C$ for 125 days and in 70ppm LiOH solution at $360^{\circ}C$ for 180 days. The matrix microstructures of the test specimens were analyzed using TEM and the oxide structures on the test specimens were analyzed using XRD. It was found from the analyses that the more Sn content the alloy had, the faster it was corroded and with the increase of Sn content in the alloy the fraction of $t-ZrO_2$ to $m-ZrO_2$ was decreased. It was also found that the alloys having more Sn showed more dislocation density than those having less.

Electrochemical Performances of the Sn-Cu Alloy Negative Electrode Materials through Simple Chemical Reduction Method

  • Oh, Ji Seon;Kim, Duri;Chae, Seung Ho;Oh, Seungjoo;Yoo, Seong Tae;Kim, Haebeen;Ryu, Ji Heon
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권3호
    • /
    • pp.329-334
    • /
    • 2019
  • Sn-Cu alloy powders were prepared via a simple chemical reduction method for the negative electrode materials in lithiumion batteries. The addition of Cu can suppress the growth of Sn particles during synthetic process. Furthermore, the Cu also acts as a matrix phase against the volume change during cycling. With increasing amount of the Cu, a stable $Cu_6Sn_5$ phase formed in the Sn-Cu alloy and its cycle performance greatly enhanced depending on the Cu content. To promote the generation of the $Cu_6Sn_5$ phase, the synthesis temperature is raised to $60-100^{\circ}C$ from the ambient temperature. The Sn-Cu alloy powders prepared at elevated temperatures showed remarkable cycle performances. The Sn-Cu alloy powder obtained at $60^{\circ}C$ exhibited a significantly high volumetric capacity of over 2,000 mAh/cc at the 50th cycle.

표면실장 적용을 위한 Sn-Zn 무연 솔더의 신뢰성 연구 (Reliability study of Sn-Zn lead-free solder for SMT application)

  • 윤정원;정승부
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.219-221
    • /
    • 2005
  • Sn-9Zn solder balls were bonded to Cu, ENIG (Electroless Nickel/Immersion Gold) and electrolytic Au/Ni pads, and the effect of aging on their joint reliability was investigated. The interfacial products were different from the general reaction layer formed in a Sn-base solder. The intermetallic compounds formed in the solder/Cu joint were $Cu_{5}Zn_{8}$ and $Cu_{6}Sn_{5}$. After aging treatment, voids formed irregularly at the bottom side of the solder because of Sn diffusion into the $Cu_{5}Zn_{8}$ IMC. In the case of the solder/ENIG joint, $AuZn_{3}$ IMCs were formed at the interface. In the case of the Au/Ni/Cu substrate, an $AuZn_{3}$ IMC layer formed at the interface due to the fast reaction between Au and Zn. In addition, the $AuZn_{3}$ IMC layer became detached from the interface after reflow. When the aging time was extended to 100 h, $Ni_{5}Zn_{21}$ IMC was observed on the Ni substrate.

  • PDF

비정질 IZO 박막의 전기적 특성에 미치는 극미량 Sn 첨가의 효과 (Effects of micro Sn addition on amorphous sputtered IZO thin films)

  • 김도영;이현준;송풍근
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.237-238
    • /
    • 2014
  • 비정질 투명 전도성 산화물의 전기적 특성을 개선하기 위해 불순물 도입을 통한 연구가 많이 진행되고 있다. 하지만 50 nm의 박막 두께에서는 물론, 얇은 박막 두께에 맞춰 극미량의 Sn 첨가를 통한 4성분계 IZO에 대한 연구는 보고된 바 없다. 본 연구에서는 DC 마그네트론 스퍼터링 법을 이용하여 Sn을 미량 도핑 한 50 nm IZO 박막을 제조하였으며, 후열처리 전후의 전기적, 기계적, 광학성 특성을 비교 분석 하였다. Sn이 미량 도핑 되었을 때 전기적 특성이 개선되었고, 이러한 현상은 후열처리 온도에 따라 뚜렷하게 관찰되었다. 이것은 불순물 Sn이 전기적으로 활성화되었기 때문이라고 생각된다.

  • PDF

Pd 첨가량 및 첨가방법이 알코올 센서용 SnO2 반도체 후막 특성에 미치는 영향 연구 (Effects of Pd Addition Amount and Method on the Characteristics of SnO2 Semiconductor Thick Films for Alcohol Gas Sensors)

  • 김준형;김형관;이호년;김현종;이희철
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.411-420
    • /
    • 2017
  • In this paper, two methods of making the Pd-added $SnO_2$ ($Pd-SnO_2$) powder with pure tetragonal phase by the hydrazine method were suggested and compared in terms of crystal structure, surface morphology, and alcohol gas response. One of the addition methods is to use $PdCl_2$ as a Pd source, the other is to use Pd-based organic with oleylamine (OAM). When Pd concentration was increased from 0 to 5 wt%, the average grain size of $Pd-SnO_2$ made with Pd-OAM were decreased from 32 to 12 nm. In the case of using with $PdCl_2$, grain size of the $PdCl_2$ fell to less than 10 nm. However, agglomerated and extruded surface morphology was observed for the films with Pd addition over 4 wt%. The crack-free $Pd-SnO_2$ thick films were able to successfully fill the $30{\mu}m$ gap of patterned Pt electrodes by optimized ink dropping method. Also, the 2 wt% $Pd-SnO_2$ thick film made with PdCl2 showed gas responses ($R_{air}/R_{gas}$) of 3.7, 5.7 and 9.0 at alcohol concentrations of 10, 50 and 100 ppm, respectively. On the other hand, the prepared 3 wt% $Pd-SnO_2$ thick film with Pd-OAM exhibited very excellent responses of 3.4, 6.8 and 12.2 at the equivalent measurement conditions, respectively. The 3 wt% $Pd-SnO_2$ thick film with Pd-OAM has a specific surface area of $31.39m^2/g$.

P2O5-SnO2계 유리에서 용융분위기에 따른 구조와 물성에 미치는 영향 (Effect of Melting Atmospheres on the Structure and Properties of P2O5-SnO2 Glass Systems)

  • 안용태;최병현;지미정;권용진;배현;황해진
    • 한국세라믹학회지
    • /
    • 제49권2호
    • /
    • pp.191-196
    • /
    • 2012
  • In this study, tin phosphate glass system($SnO_2-(1-x)P_2O_5-xB_2O_3$) that occur during the melting of the metal oxide inhibition of the oxidation reaction, and to reduce oxides of high melting temperature in the following three methods were melting. The first is the general way in the atmosphere, and the second by injecting $N_2$ gas under a neutral atmosphere, and finally in the air were melted by the addition of a reducing agent Melt in the atmosphere when the oxidation of the metal oxide is inhibited by low temperatures were melting. In addition, the deposition of crystals within glassy or inhibit devitrification phenomenon is also improved over 80% transmittance. This phenomenon, when the melting of glass, many of $Sn^{4+}$ ions are reduced to the $Sn^{2+}$ was forming oxides SnO, because it acts as a modifier oxide.

표준물첨가 및 희석법을 이용한 주석 슬랙중$Ta_2O_5$,$Nb_2O_5$$SnO_2$의 X-선 분광분석 (X-Ray Spectrometric Analysis of $Ta_2O_5$,$Nb_2O_5$ and $SnO_2$in Tin Slags using Standard Addition and Dilution Method)

  • 김영상;이동휘
    • 대한화학회지
    • /
    • 제27권6호
    • /
    • pp.424-482
    • /
    • 1983
  • 분석시료에 일정량의 표준물을 첨가한 후 희석제로 묽히는 방법을 이용하여 주석슬랙중의 $Ta_2O_5$,$Nb_2O_5$$SnO_2$를 X-선 분광 분석법으로 정량하였다. 희석제로는 $SiO_2$$Fe_2O_3$를 사용하였으며 첨가시료와 1:1의 비로 희석 시켰다. $Ta_2O_5$$SnO_2$ 의 분석결과는 $Fe_2O_3$보다 $SiO_2$로 희석시킨 것이 표준 검정곡선법에 의해 얻은 분석값과 더 잘 일치하고, $Nb_2O_5$는 이와 반대로 $SiO_2$보다 $Fe_2O_3$로 희석시킨 것이 더 잘 일치함을 보여주었다.

  • PDF

태양광 리본용 Sn-Pb-Ag 솔더의 특성에 미치는 Ag의 영향 (Effects of Ag on the Characteristics of Sn-Pb-Ag Solder for Photovoltaic Ribbon)

  • 손연수;조태식
    • 한국전기전자재료학회논문지
    • /
    • 제28권5호
    • /
    • pp.332-337
    • /
    • 2015
  • We have studied the effects of Ag on the characteristics of $Sn_{60}Pb_{40}Ag_x$ (wt%) solder for photovoltaic ribbon. Ag atoms in the solder formed an alloy phase of $Ag_3Sn$ after reacting with some part of Sn atoms, while they did not react with Pb atoms, but decreased the mean size of Pb solid phase. The enhancement of peel strength between solar cell and ribbon is an important part in the developments of long-lifespan solar module. The peel strength of the solder ribbon of $Sn_{60}Pb_{40}$ (wt%) was $169N/mm^2$, and it was largely enhanced by adding a small amount of Ag atoms. The maximum peel strength was $295N/mm^2$ in the solder ribbon of $Sn_{60}Pb_{40}Ag_2$ (wt%). This result is caused by the high binding energy of 162.9 kJ/mol between Ag atoms in the solder and Ag atoms in Ag sheet.