• Title/Summary/Keyword: Smoothing Length

Search Result 57, Processing Time 0.03 seconds

Reproducibility of Electromyography Signal Amplitude during Repetitive Dynamic Contraction

  • Mo, Seung-Min;Kwag, Jong-Seon;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.689-694
    • /
    • 2011
  • Objective: The aim of this study is to evaluate the fluctuation of signal amplitude during repetitive dynamic contraction based on surface electromyography(EMG). Background: The most previous studies were considered isometric muscle contraction and they were difference to smoothing window length by moving average filter. In practical, the human movement is dynamic state. Dynamic EMG signal which indicated as the nonstationary pattern should be analyzed differently compared with the static EMG signal. Method: Ten male subjects participated in this experiment, and EMG signal was recorded by biceps brachii, anterior/posterior deltoid, and upper/lower trapezius muscles. The subject was performed to repetitive right horizontal lifting task during ten cycles. This study was considered three independent variables(muscle, amplitude processing technique, and smoothing window length) as the within-subject experimental design. This study was estimated muscular activation by means of the linear envelope technique(LE). The dependent variable was set coefficient of variation(CV) of LE for each cycle. Results: The ANOVA results showed that the main and interaction effects between the amplitude processing technique and smoothing window length were significant difference. The CV value of peak LE was higher than mean LE. According to increase the smoothing window length, this study shows that the CV trend of peak LE was decreased. However, the CV of mean LE was analyzed constant fluctuation trend regardless of the smoothing window length. Conclusion: Based on these results, we expected that using the mean LE and 300ms window length increased reproducibility and signal noise ratio during repetitive dynamic muscle contraction. Application: These results can be used to provide fundamental information for repetitive dynamic EMG signal processing.

WRR Cell Scheduling Algorithm for Improving Smoothing Scheme (평탄화 기법을 개선한 WRR 셀 스케쥴링 알고리즘)

  • 조해성
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.3
    • /
    • pp.55-62
    • /
    • 2003
  • In this paper, I proposed a new WRR Cell Scheduling algorithm for improving the problem of existing smoothing scheme. in proposed algorithm, when queue of being service VC in present round is emptied, instead VC that difference between assigned weight and length of present buffer is biggest in all VC service. This result efficiency of bandwidth allocation is increased. And above all real-time traffic is serviced, non-real-time to allocate bandwidth of the remainder multimedia-service is possible. In one cycle, number of serviced average cell is increased. And for many eel serviced, length of total Duffer is decreased.

  • PDF

Observed Data Oriented Bispectral Estimation of Stationary Non-Gaussian Random Signals - Automatic Determination of Smoothing Bandwidth of Bispectral Windows

  • Sasaki, K.;Shirakata, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.502-507
    • /
    • 2003
  • Toward the development of practical methods for observed data oriented bispectral estimation, an automatic means for determining the smoothing bandwidth of bispectral windows is proposed, that can also provide an associated optimum bispectral estimate of stationary non-Gaussian signals, systematically only from an observed time series datum of finite length. For the conventional non-parametric bispectral estimation, the MSE (mean squared error) of the normalized estimate is reviewed under a certain mixing condition and sufficient data length, mainly from the viewpoint of the inverse relation between its bias and variance with respect to the smoothing bandwidth. Based on the fundamental relation, a systematic method not only for determining the bandwidth, but also for obtaining the optimum bispectral estimate is presented by newly introducing a MSE evaluation index of the estimate only from an observed time series datum of finite length. The effectiveness and fundamental features of the proposed method are illustrated by the basic results of numerical experiments.

  • PDF

The Bias Error due to Windows for the Wigner-Ville Distribution Estimation (위그너-빌 분포함수의 계산시 창문함수의 적용에 의한 바이어스 오차)

  • 박연규;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.80-85
    • /
    • 1995
  • Too see the effects of finite record on the estimation of WVD in practice, a window which has time varying length is examined. Its length increases linearly with time in the first half of the record, and decreases from the center of the record. The bias error due to this window decreases inversely proportionally to the window length as time increases in the first half. In the second half, the bias error increases and the resolution decreases as time increases. The bias error due to the smoothing of WVD, which is obtained by two-dimensional convolution of the true WVD and the smoothing window, which has fixed lengths along time and frequency axes, is derived for arbitrary smoothing window function. In the case of using a Gaussian window as a smoothing window, the bias error is found to be expressed as an infinite summation of differential operators. It is demonstrated that the derived formula is well applicable to the continuous WVD, but when WVD has some discontinuities, it shows the trend of the error. This is a consequence of the assumption of the derivation, that is the continuity of WVD. For windows other than Gaussian window, the derived equation is shown to be well applicable for the prediction of the bias error.

  • PDF

A Finite Memory Structure Smoothing Filter and Its Equivalent Relationship with Existing Filters (유한기억구조 스무딩 필터와 기존 필터와의 등가 관계)

  • Kim, Min Hui;Kim, Pyung Soo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.2
    • /
    • pp.53-58
    • /
    • 2021
  • In this paper, an alternative finite memory structure(FMS) smoothing filter is developed for discrete-time state-space model with a control input. To obtain the FMS smoothing filter, unbiasedness will be required beforehand in addition to a performance criteria of minimum variance. The FMS smoothing filter is obtained by directly solving an optimization problem with the unbiasedness constraint using only finite measurements and inputs on the most recent window. The proposed FMS smoothing filter is shown to have intrinsic good properties such as deadbeat and time-invariance. In addition, the proposed FMS smoothing filter is shown to be equivalent to existing FMS filters according to the delay length between the measurement and the availability of its estimate. Finally, to verify intrinsic robustness of the proposed FMS smoothing filter, computer simulations are performed for a temporary model uncertainty. Simulation results show that the proposed FMS smoothing filter can be better than the standard FMS filter and Kalman filter.

Study on Image Processing Technique for Inspection of Injected E.V.A Midsole (Injected E.V.A Midsole의 검사를 위한 영상처리 기술에 관한 연구)

  • 강인혁;조연상;박흥식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.269-272
    • /
    • 1997
  • It is need to inspect a injected E.V.A midsole automatically in shoe manufacture. We applied image processing technology to inspect a injected E.V.A midsole. Captured image by CCD camera was processed with smoothing and edge detection. We compensated error of length from processed image of gauge block and error by bending strain with the measurement method of interval length for midsole image.

  • PDF

THE SMOOTHED PARTICLE HYDRODYNAMICS AND THE BINARY TREE COMBINED INTO BTSPH: PERFORMANCE TESTS

  • KIM W. -T.;HONG S. S.;YUN H. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.13-29
    • /
    • 1994
  • We have constructed a 3-dim hydrodynamics code called BTSPH. The fluid dynamics part of the code is based on the smoothed particle hydrodynamics (SPH), and for its Poisson solver the binary tree (BT) scheme is employed. We let the smoothing length in the SPH algorithm vary with space and time, so that resolution of the calculation is considerably enhanced over the version of SPH with fixed smoothing length. The binary tree scheme calculates the gravitational force at a point by collecting the monopole forces from neighboring particles and the multipole forces from aggregates of distant particles. The BTSPH is free from geometric constraints, does not rely on grids, and needs arrays of moderate size. With the code we have run the following set of test calculations: one-dim shock tube, adiabatic collapse of an isothermal cloud, small oscillation of an equilibrium polytrope of index 3/2, and tidal encounter of the polytrope and a point mass perturber. Results of the tests confirmed the code performance.

  • PDF

Analysis of Hagen-Poiseuille Flow Using SPH

  • Min, Oakkey;Moon, Wonjoo;You, Sukbeom
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.395-402
    • /
    • 2002
  • This paper shows how to formulate the transient analysis of 2-dimensional Hagen-Poiseuille flow using smoothed particle hydrodynamics (SPH). Treatments of viscosity, particle approximation and boundary conditions are explained. Numerical tests are calculated to examine effects caused by the number of particles, the number of particles per smoothing length, artificial viscosity and time increments for 2-dimensional Hagen-Poiseuille flow. Artificial viscosity for reducing the numerical instability directly affects the velocity of the flow, though effects of the other parameters do not produce as much effect as artificial viscosity. Numerical solutions using SPH show close agreement with the exact ones for the model flow, but SPH parameter must be chosen carefully Numerical solutions indicate that SPH is also an effective method for the analysis of 2-dimensional Hagen-Poiseuille flow.

Single-Channel Speech Separation Using the Time-Frequency Smoothed Soft Mask Filter (시간-주파수 스무딩이 적용된 소프트 마스크 필터를 이용한 단일 채널 음성 분리)

  • Lee, Yun-Kyung;Kwon, Oh-Wook
    • MALSORI
    • /
    • no.67
    • /
    • pp.195-216
    • /
    • 2008
  • This paper addresses the problem of single-channel speech separation to extract the speech signal uttered by the speaker of interest from a mixture of speech signals. We propose to apply time-frequency smoothing to the existing statistical single-channel speech separation algorithms: The soft mask and the minimum-mean-square-error (MMSE) algorithms. In the proposed method, we use the two smoothing later. One is the uniform mask filter whose filter length is uniform at the time-Sequency domain, and the other is the met-scale filter whose filter length is met-scaled at the time domain. In our speech separation experiments, the uniform mask filter improves speaker-to-interference ratio (SIR) by 2.1dB and 1dB for the soft mask algorithm and the MMSE algorithm, respectively, whereas the mel-scale filter achieves 1.1dB and 0.8dB for the same algorithms.

  • PDF

Parametric studies on smoothed particle hydrodynamic simulations for accurate estimation of open surface flow force

  • Lee, Sangmin;Hong, Jung-Wuk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.85-101
    • /
    • 2020
  • The optimal parameters for the fluid-structure interaction analysis using the Smoothed Particle Hydrodynamics (SPH) for fluids and finite elements for structures, respectively, are explored, and the effectiveness of the simulations with those parameters is validated by solving several open surface fluid problems. For the optimization of the Equation of State (EOS) and the simulation parameters such as the time step, initial particle spacing, and smoothing length factor, a dam-break problem and deflection of an elastic plate is selected, and the least squares analysis is performed on the simulation results. With the optimal values of the pivotal parameters, the accuracy of the simulation is validated by calculating the exerted force on a moving solid column in the open surface fluid. Overall, the SPH-FEM coupled simulation is very effective to calculate the fluid-structure interaction. However, the relevant parameters should be carefully selected to obtain accurate results.