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( The Bias Error due to Windows for the Wigner-Ville Distribution Estimation )

( Yon-Kyu Park, Yang-Hann Kim )

1. INTRODUCTION

Although spectrum analysis using FFT algorithm has been
extensively used to analyze mechanical signatures such as vibration
and acoustic signals, there has been increasing demands of other
processing methods which not only provide other representations of
signal of interest but also appropriately process non-stationary signals.
A non-stationary signal in time domain could be regarded as that of a
signal that changes its frequency with respect to time, or more
generally, its statistical characteristics change in terms of time. The
time-frequency analysis of signals is one of the methods for analyzing
non-stationary signal.

There are various time-frequency analysis tools; instantaneous
frequency, short-time Fourier transform(STFT), wavelet transform,
and Wigner-Ville distribution(WVD) are some examples.
Instantaneous frequency shows frequency variation along time,
therefore it can be used to analyze the transient signal with
conventional amplitude-time representation of signal[l, 2]. On the
other hand, WVD can not only show the frequency variation with
respect to time but also exhibit energy contents of the signal along
with time and frequency, and produces some additional components
to the signal, due to its estimation.

Recently, WVD has been regarded as a useful tool and applied to
various types of mechanical noise and vibration signals; some of the
applications are wave decomposition in a beam and characterization of
dispersion relation[3, 4]. WVD has been studied in terms of many
properties in time and frequency domain; its uniqueness condition,
shift and modulation properties, the relation between WVD and
instantaneous frequency or group delay, and symmetric properties, etc
[S, 6]. It is also common practice to use analytic signal to avoid
aliasing problem of WVD in frequency domain[5, 7] and also to
smooth the WVD to reduce the variance and to eliminate the possible
negative value of WVDI[5, 8).
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For practical transient signal processing, time data cannot be
infinite but must have finite length, therefore the length of time
dependent autocorrelation function vares with time, the size of
Fourier transform which is to be carried out at each time to get WVD;
the window size of Fourier transform, also varies with time. In this
paper, the effects of the time varying window length on the WVD are
investigated. The bias error and the frequency resolution of WVD are
influenced by the time varying window length.

The aforementioned smoothed WVD can be obtained by two-
dimensional convolution along time and frequency axes, of true WVD
and smoothing window function. The error bound caused by this
inherent smoothing algorithm is derived by applying the method
proposed by A. Papoulis[9]. The error bound is found explicitly in
terms of the smoothing window function; in the case of using a
Gaussian window the eror is found to be an infinite summation of
differential operators. For cases other than Gaussian window, the

error bound of smoothed WVD is also analytically obtained.

2. EFFECTS OF FINITE RECORD

Wigner-Ville distiibution which was introduced in 1932[10],
considers a transformation of a wave function into probability function
of the simultaneous values of n independent variables and n momenta.
If one considers only an instant of time and frequency then, WVD, W

(t, ) can be written as
W(t,w):fx s(t+§)s°(t- %)e""‘"dt )

which represents the instantancous energy of a signal along its
frequency axis when one sees Eq.(1) at fixed or arbitrary time, or
amplitude variation of signal along time axis if it is projected from an
arbitrary frequency. In Eq.(1), s( t) is an analytic signal, * denotes
complex conjugate, and t, w are time and frequency respectively. For

simplicity, let s(t+ ;) s'(t- ;) be c( t, T ), the time dependent
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autocorrelation function, then Eq.(1) becomes

W(t,u))=f c(t,t)eTdr | )

Because of the finite length of the signal, the estimation of WVD
involves the use of a window; in other words, the infinite integration is

to be finite integration. Therefore, Eq.(2) has to be rewritten as

W[(t,(»):f c(t, v)d(t, T) e dr 3

where, W ( t, w ) is the windowed WVD, and d( t, t ) is the window
function to express the finite length of the signal due to the truncation
of the signal in practice. It is therefore possible to infer that the
window function d( t, t), especially the window length is a function of
time. If the length of the signal is L, thens(t)=0fort<Oandt>L.
Henceforth, from the definition of ¢(t, T ) and from Eq.(3), c( t, T ) has
non-zero value when the conditions 2t-2L<t<2t and
-2t < t<2L -2t are satisfied. Fig1 depicts the region of Tand t. It
is noteworthy that the range of d( t, t ); the window size ( M(t)),
must be within the non-zero range of ¢( t, t). Therefore, from Fig.1,

one can resolive that

4t ,0<t< L
M(t)= 2. 0]
4L-4t %<1<L

The maximum of M( t )is 2L at t= 1/2. As well known, resolution
in frequency domain is inversely proportional to window size, in this
case time varying window, M( t ), therefore the resolution is also a
function of an instant time. When M( t ) is large, the resolution is
high. Especially at t = L/2, the resolution is highest. On the contrary,
when M( t ) is small, the resolution is low. As an extreme case, att =0
or t = L, the resolution becomes lowest and the resolution band is

infinity.

3

T< -2t-L)

T>2(-L)
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=M(t)
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Fig.1 The range of T in which the time-dependent autocorrelation
function has non-zero value.

From these observations, it is now obvious that the relation

between the use of window and the bias error due to the window on
the estimation of WVD must be conveyed in more details. To see the
effects of finite length on the bias error, let's start with the window
having time varying length ( M( t)), in time domain first.

Eq.(3) can be rewritten as a convolution in the frequency domain.

W(t, )= W(t, ®)@D(t, w)

=]_f W(t, w-w')D(t, w)dw 5)
2n )=

where, ® denotes the convolution in frequency domain, and W(t, w ),
D( t, w ) are the Fourier transform of ¢( 1, t ), d( t, T) respectively. As
mentioned before, d( t, T ) is a function of time as well as its length
Therefore, D( t, w) is also a function of time, henceforth W (t, @),
which is the convolution of W( t, w ) and D( ¢, w ), is also a function
of time, and is related to the time varying window length.

If W(t, - @ ) is assumed to be continuous up to second
derivative, then it is possible to expand W( t, w - @' ) around W( t, &)

as a Taylor series, and can be approximated as
Wt 0-0 )= W(t, ®)-0 Wo(t, ©)+ ;_mlwm(x, ) (6)

where the subscript denotes independent variables of differentiation.
In fact, one could generalize Eq.(6) by including higher order

derivatives of WVD with respect to frequency; a similar procedure

will be shown in the next section for two-dimensional smoothing,
which implies two-dimensional convolution along time and frequency
axes, but for simplicity, the assumption of Eq.(6) is to be kept.

Using Eq.(6) and the fact that D( t, @ ) can be assumed to be an
even function of w without the loss of generality, the windowed WVD,

W,,( 1, w ) can be obtained as
Wit )= W(t, o)+ 4wa(|, m)f o D(1, ') do' (T
U -~

Now the bias error due to the window can be defined as the difference

between true and windowed WVD and can be obtained as

E(t, 0)=WK(t, @)-W(t, @)

-l Waa(t, 221)«, ') do'
p (“”f.,“’ (t, w')dw' ®)

From Eq.(8) one can conclude that the bias error due to the window
is proportional to the second moment of D( t, ® ) and second
derivative of W{( t, w ) with respect to frequency. In practice, this
means that a spiky WVD in frequency tends to produce large bias
error but can be reduced if one uses the window whose second
moment with respect to frequency is small; as an extreme case, for a

sinusoidal signal, one has to use dirac delta type window in frequency
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domain, which means infinite flat window in time domain, therefore
has infinite data length. To see the more specific relation between the
error bound and the window size M( t ), the relation between> the
window size and its second moment in frequency must be conveyed.
As mentioned briefly, if the window size is large, then D( t, @ ), the
Fourier transform of the window is narrow; its second moment is
small. Therefore, if M( t ) is large, then the bias error will be small,
and if M(t) is small, then the bias error will be large.

The effect of window on two-dimensional convolution for having

smoothed WVD will now be examined.

3. BIAS ERROR DUE TO SMOOTHING

A smoothed WVD can be calculated by the two-dimensional

convolution between true WVD and the smoothing window function,

that is

Ws(t,m)=ffW(t-t',m-m')G(t',m')dt'dw' ©)

where, G( t, @ ) is the two-dimensional window function. In this
convolution procedure, the lengths of the smoothing window are fixed
along the time and frequency axes, unlike the case of previous section,
where the window in time domain has time varying length. If W(t, @
) is continuous and differentiable in any order of interest, then W(t-t,

w - ') can be expanded around W( t, w ) as

W(t-t, 0-0')=W(t, o)- {:' Wit, @)+ 0 Wl t, ©) }
+21—'{t'2W..(t, ©)+ 200 Wi(t, ©) + 0% Weo(t, @) }

t o (10)

Using Eq.(10), assuming that G( t, @ ) is an even function of t and

w without the loss of generality, and having the energy is to be

conserved during the smoothing, i.e,f f G(t, w)dt dw=1, then

the smoothed WVD becomes

Wt, 0)=W(t, w)+ % W t, m)ﬂ f: t2G( 1, o )dt'dy’
+ Wou(t, u,)J': f:w'zG(t', o' )dt'de’ oo an

Then the bias error due to the smoothing is

Ex(t, ®)=Wy(t, 0)- W(t, »)

=21_’ Wu(t, w)f f t2G( 1, w' )dt'dy’

+ Wau(t, m)fg f «?G(t, o' )drdy

+ ‘.‘1!_ Wan(t, w)fj f: tG( 1, o' )dt'dy'

+ 6Wiwo(t, w)fz fl %0?G( 1, o' )dt'dy

+ Wawow (1, u)).[’ fsmﬂG(t', o )dtde' B+ (o)

Eq.(12) essentially shows that the bias emror is proportional to the
even orders of derivatives of WVD with respect to time and frequency
and the even orders of moments of window function.

As a special case, consider a Gaussian window function which can

be written as

. ._'2_¢L2
G(t, w)= i €e{ 20¢ 20,2
2% 6

(13)

where, o,, 0, are standard deviations of the window along time and
frequency axes respectively. The Gaussian window function is most
commonly used in this two-dimensional smoothing; one of the reasons
is its symmetricity in time and frequency axes.

From Eq.(13) and Eqs.(11), (12) the smoothed WVD and the bias

error for a Gaussian window can be obtained as

= 2 2\
Wyt @)=y 1 (aza—+a»2—a—] W(L o) (14

n=02" n! o’ dw?
* a2 62 n

Es(t, w)= I o Zv a2 | W(Lw) (s
.21 2" n! ot dw? 3

If n=1 WVD can be approximated by employing up to the 2nd

order in Taylor series expansion, then
B o)l d @ Wt w)s aWat ) b g

From Eq.(16) one can observe that if W( t, @) is concave, Witw
Yand W_ (t, ®) are positive, then the error will be positive. This
means that if WVD is spiky downwards at an arbitrary time and
frequency, then the smoothing process levels up the WVD at that
point. As a similar consideration, if WVD is convex at a fixed time
and frequency, the smoothing levels down the WVD.

Fig.2 shows the result of a computer simulation of a pure sine
signal of 100 Hz frequency. The A of Fig.2 represenis WVD. The
value of WVD increases with time in the first halif of the record, and
decreases in the second half. This is because the window length varies
with time as mentioned before, therefore the larger the window length,
the greater the energy within the window. Henceforth, if the window
length becomes larger, the value of WVD will be larger as shown.
The B of Fig.2 is the smoothed WVD using a Gaussian window
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function as a smoothing window. Because of the smoothing effect,
WVD has the same values for the entire time axis at the frequency of
100Hz. The C represents only the difference between the B and the A,
and the D is the error using Eq.(16) applied to the A. The shape of the
C and the D are resemblant, but the values are quite different, and the
difference becomes larger as time goes to the center of the record,
where WVD is most spiky. This discrepancy occurs because WVD is
spiky at those times and frequencies where discontinuity in WVD
takes place and the assumption of continuity in the derivation of Eq.
(16) is violated. As mentioned, although Eq.(16) is not well applicable
to the spiky WVD, it can show the shape of emror even for this extreme
case.

For a signal in which WVD does not have spikes, that is WVD is
continuous at all times and frequencies, applicability of Eq.(16) is also
tested. A special signal which has continuous WVD is prepared, and
the simulation result for that signal is illustrated at Fig.3. The A of
Fig.3 is the WVD without smoothing, and is quite more continuous
than that of Fig.2, therefore the error using Eq.(16) is very similar to
the true error, not only in temns of shape but also in terms of absolute
value. The only significant discrepancy in the C and the D occurs
where the WVD suddenly increases, in other words, where there is
discontinuity. It is noteworthy that WVD is concave at that time and
frequency, so the emor is positive. At other times and frequencies, the
C and the D have similar values, especially at the time and frequency
where WVD has the smallest negative value, the absolute values of the
C and the D are not much different.

From the above simulations, one can conclude that the derived
result conceming the bias emror due to smoothing, is well applicable to
the signal of which WVD has no discontinuity, but it has some limited
features when WVD has discontinuity, although it can show the trend
of the error.

Next is to check the appropriateness of Eq.(12) which expresses the
bias emror due to smoothing window functions other than Gaussian
window. The rectangular and Hann windows are selected for this
purpose. It is noteworthy that rectangular and Hann windows are
expressed in terms of shapes with respect to their lengths, on the other
hand, a Gaussian window is determined by its standard deviation. For
the systematic comparison, it is therefore necessary to relate the
lengths of rectangular and Hann windows to the standard deviation of
a Gaussian window. The relation can be accomplished by imposing
equal energies within all the windows; the lengths of rectangular and
Hann windows are equivalent to 2.5 and 5 times respectively, of the
standard deviation of a Gaussian window.

From the above relations, and having the energy is conserved
during the smoothing; scale the windows of which energy is to be
unity, the bias error, considering up to second order term, due to

rectangular and Hann windows can be readily obtained as

Er(t, 0)m0.26 4 o Wi(t, ® )+ &? Wau(t, ®) an

Eft, ©)m041 4 o2 Wy(t, © )+ a? Wao(t, @) 2 (18)
where, E.( t, ® ) and E( t, @ ) denote the bias emrors due to
rectangular and Hann windows respectively, and o, and o, are the
standard deviations of equivalent Gaussian window as written by Eq.
(16).

From Eqgs.(16), (17), and (18), one can predict that the bias error
will be smallest for the case of using a rectangular window, and will
be largest if one uses a Gaussian window.

Fig.4 depicts the smoothed WVD using a rectangular window of
100Hz sine signal which is the same as that used in Fig.2, and the bias
error which is the difference between the true WVD and the smoothed
WVD. Fig.5 is the results for the same signal, but using a Hann
window as the smoothing window. All the smoothed WVDs and the
bias errors are similar for the cases of using rectangular, Hann, and
Gaussian windows(Fig.2), but smoothed WVD by using a rectangular
window shows some fluctuation, because of side lobe effects.

The maximum absolute error and RMS value of the error due to
each window are shown in Table.1. Bias error due to a rectangular
window has the smallest value, and the error due to a Gaussian
window has the largest value, as anticipated before. Moreover, as one
can see from Fig.4, it is noteworthy that the smaller bias error does not
promise better, smoothed WVD; small bias error means less
smoothing effect, and large bias emor indicates larger smoothing
effect. This indicates that bias emror and smoothing effect has a trade-
off.

Table 1. Bias error due to various smoothing window.

Window Type Max. Error RMS of Error
Rectangular 1.982631 0.1434711
Hann 1.983360 0.1435499
Gaussian 1.983940 0.1436095

4. CONCLUSIONS

To see the effects of finite record on the estimation of WVD in
practice, a window which has time varying length is examined. Its
length increases lineardly with time in the first half of the record, and
decreases from the center of the record. The bias error due to this
window decreases inversely proportionally to the window length and

the resolution in frequency domain increases proportionally to the
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window length as time increases in the first half. In the second half,
he bias error increases and the resolution decreases as time increases.
The bias error due to the smoothing of WVD, which is obtained by
two-dimensional convolution of the true WVD and the smoothing
window, which has fixed lengths along time and frequency axes, is
derived for arbitrary smoothing window function. In the case of using
a Gaussian window as a smoothing window, the bias error is found to
be expressed as an infinite summation of differential operators. It is
demonstrated that the derived formula is well applicable to the
continuous WVD, but when WVD has some discontinuities, it shows
the trend of the error. This is a consequence of the assumption of the
derivation, that is the continuity of WVD. For windows other than
Gaussian window, the derived equation is shown to be well applicable

for the prediction of the bias error.
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A. WVD without smoothing

B. Smoothed WVD

"
B. Error + Amlytic result

Fig.2 WVD and the bias error due to smoothing using Gaussian
window function for the signal of pure sine of which
frequency is 100Hz
(Number of data = 512, Sampling frequency = 512Hz,

o, = 20At, o, = 20Aw).
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Fig.3 WVD and the bias error due to smoothing using Gaussian
window functio for the signal which has continuous WVD

Wigner—Vilte Distribution
re 4 .z ] 11008 14700

Saser

A Smoothed WVD

B. Smoothed WVD

B. True bias error

Fig.4 Smoothed WVD and the bias error due to smoothing using
rectangular window for the signal used in Fig.2.
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A, Smoothed WVD

D. Error ' Anclytic result

i

B. True bias error

(Number of data = 512, Sampling frequency = 512Hz, Fig.5 Smoothed WVD and the bias error due to smoothing using
o, = 20At, o = 20Aw). Hann window for the signal used in Fig.2.
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