• Title/Summary/Keyword: Smooth muscle actin

Search Result 157, Processing Time 0.026 seconds

LncRNA H19 Drives Proliferation of Cardiac Fibroblasts and Collagen Production via Suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β Axis

  • Guo, Feng;Tang, Chengchun;Huang, Bo;Gu, Lifei;Zhou, Jun;Mo, Zongyang;Liu, Chang;Liu, Yuqing
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.122-133
    • /
    • 2022
  • The aim of this study was to investigating whether lncRNA H19 promotes myocardial fibrosis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis. Patients with atrial fibrillation (AF) and healthy volunteers were included in the study, and their biochemical parameters were collected. In addition, pcDNA3.1-H19, si-H19, and miR-29a/b-3p mimic/inhibitor were transfected into cardiac fibroblasts (CFs), and proliferation of CFs was detected by MTT assay. Expression of H19 and miR-29a/b-3p were detected using real-time quantitative polymerase chain reaction, and expression of α-smooth muscle actin (α-SMA), collagen I, collagen II, matrix metalloproteinase-2 (MMP-2), and elastin were measured by western blot analysis. The dual luciferase reporter gene assay was carried out to detect the sponging relationship between H19 and miR-29a/b-3p in CFs. Compared with healthy volunteers, the level of plasma H19 was significantly elevated in patients with AF, while miR-29a-3p and miR-29b-3p were markedly depressed (P < 0.05). Serum expression of lncRNA H19 was negatively correlated with the expression of miR-29a-3p and miR-29b-3p among patients with AF (rs = -0.337, rs = -0.236). Moreover, up-regulation of H19 expression and down-regulation of miR-29a/b-3p expression facilitated proliferation and synthesis of extracellular matrix (ECM)-related proteins. SB431542 and si-VEGFA are able to reverse the promotion of miR-29a/b-3p on proliferation of CFs and ECM-related protein synthesis. The findings of the present study suggest that H19 promoted CF proliferation and collagen synthesis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis, and provide support for a potential new direction for the treatment of AF.

Liver Protective Effect of the Co-treatment of Rhei Radix et Rhizoma and Silymarin on TAA-induced Liver Injury (대황과 실리마린의 병용투여의 간섬유화 보호 효과)

  • Il-ha Jeong;Sang-woo Ji;Seong-soo Roh
    • The Journal of Internal Korean Medicine
    • /
    • v.44 no.3
    • /
    • pp.402-417
    • /
    • 2023
  • Objective: Liver fibrosis is a highly conserved wound-healing response and the final common pathway of chronic inflammatory injury. This study aimed to evaluate the potential anti-fibrotic effect of the combination of Rhei Radix et Rhizoma water extract (RW) and silymarin in a thioacetamide (TAA)-induced liver fibrosis model. Methods: The liver fibrosis mouse model was established through the intraperitoneal injection of TAA (1 week 100 mg/kg, 2-3 weeks 200 mg/kg, 4-8 weeks 400 mg/kg) three times per week for eight weeks. Animal experiments were conducted in five groups; Normal, Control (TAA-induced liver fibrosis mice), Sily (silymarin 50 mg/kg), RSL (RW 50 mg/kg+silymarin 50 mg/kg), and RSH (RW 100 mg/kg+silymarin 50 mg/kg). Biochemical analyses were measured in serum, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA), and ammonia levels. Liver inflammatory cytokines and fibrous biomarkers were measured by Western blot analysis, and liver histopathology was evaluated through tissue staining. Results: A significant decrease in the liver function markers AST and ALT and a reduction in ammonia and total bilirubin were observed in the group treated with RSL and RSH. Measurement of reactive oxygen species and MDA revealed a significant decrease in the RSL and RSH administration group compared to the TAA induction group. The expression of extracellular matrix-related proteins, such as transforming growth factor β1, α-smooth muscle actin, and collagen type I alpha 1, was likewise significantly decreased. All drug-administered groups had increased matrix metalloproteinase-9 but a decreasing tissue inhibitor of matrix metalloproteinase-1. RSL and RSH exerted a significant upregulation of NADPH oxidase 2, p22phox, and p47phox, which are oxidative stress-related factors. Furthermore, pro-inflammatory proteins such as cyclooxygenase 2 and interleukin-1β were markedly suppressed through the inhibition of nuclear factor kappa B activation. Conclusions: The administration of RW and silymarin suppressed the NADPH oxidase factor protein level and showed a tendency to reduce inflammation-related enzymes. These results suggest that the combined administration of RW and silymarin improves acute liver injury induced by TAA.

The Effect of Dangguijakyak-san on Wound Healing (당귀작약산의 창상 회복에 대한 효과)

  • Yun-Jin Lee;Chang-Hoon Woo;Young-Jun Kim;Hyeon-Ji Kim;Hee-Duk An
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.3
    • /
    • pp.47-65
    • /
    • 2023
  • Objectives We evaluated the wound healing effects of Dangguijakyak-san (DJ) using C57BL/6 mice that were generated open wound. Methods The study was conducted with seven C57BL/6 mice assigned to each group, divided into the normal group, control group, vitamin E group, DJ low-dose group, DJ high-dose group. We measured total polyphenol, flavonoid contents, the size of the wound, liver function, pro-inflammatory cytokine activity in serum, inflammation-related proteins, adhesion molecules and chemokine proteins, collagen-related proteins in skin tissue and histopathological changes by H&E and Masson's staining. Results DJ treatment significantly reduced the area of the wound compared to the control group. Also, inflammatory cytokines were reduced and the expression of anti-inflammatory-related factors (interleukin-4 [IL-4] and IL-10) was significantly increased in the DJ treatment group. We identified that DJ treatment inhibits both pathways of inflammation, the mitogen-activated protein kinases and nuclear factor-κB pathway. Moreover, the protein expressions of Sirt1 (sirtuin 1), MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), and VCAM-1 (vascular cell adhesion molecule 1) were decreased by DJ administration. Also, the expression of α-smooth muscle actin and collagen type I alpha 1, collagen-related proteins, that help skin recovery was significantly increased in the DJ treatment group. Histopathologically, a relatively thin epithelial layer could be observed in the DJ administration group, as well as an increase in fibroblasts and collagen fibers. Conclusions These data suggest that DJ treatment is effective in wound healing, suppressing inflammatory proteins, increasing skin repair factors and improving histopathological changes caused by wounds.

Role of Chemical Exchange Saturation Transfer and Magnetization Transfer MRI in Detecting Metabolic and Structural Changes of Renal Fibrosis in an Animal Model at 3T

  • Anqin Li;Chuou Xu;Ping Liang;Yao Hu;Yaqi Shen;Daoyu Hu;Zhen Li;Ihab R. Kamel
    • Korean Journal of Radiology
    • /
    • v.21 no.5
    • /
    • pp.588-597
    • /
    • 2020
  • Objective: To investigate the value of combined chemical exchange saturation transfer (CEST) and conventional magnetization transfer imaging (MT) in detecting metabolic and structural changes of renal fibrosis in rats with unilateral ureteral obstruction (UUO) at 3T MRI. Materials and Methods: Thirty-five Sprague-Dawley rats underwent UUO surgery (n = 25) or sham surgery (n = 10). The obstructed and contralateral kidneys were evaluated on days 1, 3, 5, and 7 after surgery. After CEST and MT examinations, 18F-labeled fluoro-2-deoxyglucose positron emission tomography was performed to quantify glucose metabolism. Fibrosis was measured by histology and western blots. Correlations were compared between asymmetrical magnetization transfer ratio at 1.2 ppm (MTRasym(1.2ppm)) derived from CEST and maximum standard uptake value (SUVmax) and between magnetization transfer ratio (MTR) derived from MT and alpha-smooth muscle actin (α-SMA). Results: On days 3 and 7, MTRasym(1.2ppm) and MTR of UUO renal cortex and medulla were significantly different from those of contralateral kidneys (p < 0.05). On day 7, MTRasym(1.2ppm) and MTR of UUO renal cortex and medulla were significantly different from those of sham-operated kidneys (p < 0.05). The MTRasym(1.2ppm) of UUO renal medulla was fairly negatively correlated with SUVmax (r = -0.350, p = 0.021), whereas MTR of UUO renal medulla was strongly negatively correlated with α-SMA (r = -0.744, p < 0.001). Conclusion: CEST and MT could provide metabolic and structural information for comprehensive assessment of renal fibrosis in UUO rats in 3T MRI and may aid in clinical monitoring of renal fibrosis in patients with chronic kidney disease.

Mesenchymal Stem Cells Ameliorate Fibrosis by Enhancing Autophagy via Inhibiting Galectin-3/Akt/mTOR Pathway and by Alleviating the EMT via Inhibiting Galectin-3/Akt/GSK3β/Snail Pathway in NRK-52E Fibrosis

  • Yu Zhao;Chuan Guo;Lianlin Zeng;Jialing Li;Xia Liu;Yiwei Wang;Kun Zhao;Bo Chen
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.52-65
    • /
    • 2023
  • Background and Objectives: Epithelial-Mesenchymal transition (EMT) is one of the origins of myofibroblasts in renal interstitial fibrosis. Mesenchymal stem cells (MSCs) alleviating EMT has been proved, but the concrete mechanism is unclear. To explore the mechanism, serum-free MSCs conditioned medium (SF-MSCs-CM) was used to treat rat renal tubular epithelial cells (NRK-52E) fibrosis induced by transforming growth factor-β1 (TGF-β1) which ameliorated EMT. Methods and Results: Galectin-3 knockdown (Gal-3 KD) and overexpression (Gal-3 OE) lentiviral vectors were established and transfected into NRK-52E. NRK-52E fibrosis model was induced by TGF-β1 and treated with the SF-MSCs-CM for 24 h after modelling. Fibrosis and autophagy related indexes were detected by western blot and immunocytochemistry. In model group, the expressions of α-smooth muscle actin (α-SMA), fibronectin (FN), Galectin-3, Snail, Kim-1, and the ratios of P-Akt/Akt, P-GSK3β/GSK3β, P-PI3K/PI3K, P-mTOR/mTOR, TIMP1/MMP9, and LC3B-II/I were obviously increased, and E-Cadherin (E-cad) and P62 decreased significantly compared with control group. SF-MSCs-CM showed an opposite trend after treatment compared with model group. Whether in Gal-3 KD or Gal-3 OE NRK-52E cells, SF-MSCs-CM also showed similar trends. However, the effects of anti-fibrosis and enhanced autophagy in Gal-3 KD cells were more obvious than those in Gal-3 OE cells. Conclusions: SF-MSCs-CM probably alleviated the EMT via inhibiting Galectin-3/Akt/GSK3β/Snail pathway. Meanwhile, Gal-3 KD possibly enhanced autophagy via inhibiting Galectin-3/Akt/mTOR pathway, which synergistically ameliorated renal fibrosis. Targeting galectin-3 may be a potential target for the treatment of renal fibrosis.

Piperine ameliorates the severity of fibrosis via inhibition of TGF-β/SMAD signaling in a mouse model of chronic pancreatitis

  • Ji-Won Choi;Sung-Kon Lee;Myoung-Jin Kim;Dong-Gu Kim;Joon-Yeon Shin;Ziqi Zhou;Il-Joo Jo;Ho-Joon Song;Gi-Sang Bae;Sung-Joo Park
    • Molecular Medicine Reports
    • /
    • v.20 no.4
    • /
    • pp.3709-3718
    • /
    • 2019
  • Chronic pancreatitis (CP) is characterized by recurrent pancreatic injury, resulting in inflammation and fibrosis. Currently, there are no drugs for the treatment of pancreatic fibrosis associated with CP. Piperine, a natural alkaloid found in black pepper, has been reported to show anti-inflammatory, anti-oxidative, and antitumor activities. Although piperine exhibits numerous properties in regards to the regulation of diverse diseases, the effects of piperine on CP have not been established. To investigate the effects of piperine on CP in vivo, we induced CP in mice through the repetitive administration of cerulein (50 ㎍/kg) six times at 1-h intervals, 5 times per week, for a total of 3 weeks. In the pre-treatment groups, piperine (1, 5, or 10 mg/kg) or corn oil were administrated orally at 1 h before the first cerulein injection, once a day, 5 times a week, for a total of 3 weeks. In the post-treatment groups, piperine (10 mg/kg) or corn oil was administered orally at 1 or 2 week after the first cerulein injection. Pancreases were collected for histological analysis. In addition, pancreatic stellate cells (PSCs) were isolated to examine the anti-fibrogenic effects and regulatory mechanisms of piperine. Piperine treatment significantly inhibited histological damage in the pancreas, increased the pancreatic acinar cell survival, reduced collagen deposition and reduced pro-inflammatory cytokines and chemokines. In addition, piperine treatment reduced the expression of fibrotic mediators, such as α-smooth muscle actin (α-SMA), collagen, and fibronectin 1 in the pancreas and PSCs. Moreover, piperine treatment reduced the production of transforming growth factor (TGF)-β in the pancreas and PSCs. Furthermore, piperine treatment inhibited TGF-β-induced pSMAD2/3 activation but not pSMAD1/5 in the PSCs. These findings suggest that piperine treatment ameliorates pancreatic fibrosis by inhibiting TGF-β/SMAD2/3 signaling during CP.

Apolipoprotein A1 Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition of Alveolar Epithelial Cells

  • Baek, Ae Rin;Lee, Ji Min;Seo, Hyun Jung;Park, Jong Sook;Lee, June Hyuk;Park, Sung Woo;Jang, An Soo;Kim, Do Jin;Koh, Eun Suk;Uh, Soo Taek;Kim, Yong Hoon;Park, Choon Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.3
    • /
    • pp.143-152
    • /
    • 2016
  • Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease characterized by the accumulation of excessive fibroblasts and myofibroblasts in the extracellular matrix. The transforming growth factor ${\beta}1$ (TGF-${\beta}1$)-induced epithelial-to-mesenchymal transition (EMT) is thought to be a possible source of fibroblasts/myofibroblasts in IPF lungs. We have previously reported that apolipoprotein A1 (ApoA1) has anti-fibrotic activity in experimental lung fibrosis. In this study, we determine whether ApoA1 modulates TGF-${\beta}1$-induced EMT in experimental lung fibrosis and clarify its mechanism of action. Methods: The A549 alveolar epithelial cell line was treated with TGF-${\beta}1$ with or without ApoA1. Morphological changes and expression of EMT-related markers, including E-cadherin, N-cadherin, and ${\alpha}$-smooth muscle actin were evaluated. Expressions of Smad and non-Smad mediators and TGF-${\beta}1$ receptor type 1 ($T{\beta}RI$) and type 2 ($T{\beta}RII$) were measured. The silica-induced lung fibrosis model was established using ApoA1 overexpressing transgenic mice. Results: TGF-${\beta}1$-treated A549 cells were changed to the mesenchymal morphology with less E-cadherin and more N-cadherin expression. The addition of ApoA1 inhibited the TGF-${\beta}1$-induced change of the EMT phenotype. ApoA1 inhibited the TGF-${\beta}1$-induced increase in the phosphorylation of Smad2 and 3 as well as that of ERK and p38 mitogen-activated protein kinase mediators. In addition, ApoA1 reduced the TGF-${\beta}1$-induced increase in $T{\beta}RI$ and $T{\beta}RII$ expression. In a mouse model of silica-induced lung fibrosis, ApoA1 overexpression reduced the silica-mediated effects, which were increased N-cadherin and decreased E-cadherin expression in the alveolar epithelium. Conclusion: Our data demonstrate that ApoA1 inhibits TGF-${\beta}1$-induced EMT in experimental lung fibrosis.