Acknowledgement
The authors thank Xiaolei Song for MRI technical assistance (Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA).
References
- Grenier N, Merville P, Combe C. Radiologic imaging of the renal parenchyma structure and function. Nat Rev Nephrol 2016;12:348-359 https://doi.org/10.1038/nrneph.2016.44
- Baues M, Dasgupta A, Ehling J, Prakash J, Boor P, Tacke F, et al. Fibrosis imaging: current concepts and future directions. Adv Drug Deliv Rev 2017;121:9-26 https://doi.org/10.1016/j.addr.2017.10.013
- Vanhove T, Vermeulen T, Annaert P, Lerut E, Kuypers DRJ. High intrapatient variability of tacrolimus concentrations predicts accelerated progression of chronic histologic lesions in renal recipients. Am J Transplant 2016;16:2954-2963 https://doi.org/10.1111/ajt.13803
- Nastase MV, Zeng-Brouwers J, Wygrecka M, Schaefer L. Targeting renal fibrosis: mechanisms and drug delivery systems. Adv Drug Deliv Rev 2018;129:295-307 https://doi.org/10.1016/j.addr.2017.12.019
- Morrell GR, Zhang JL, Lee VS. Magnetic resonance imaging of the fibrotic kidney. J Am Soc Nephrol 2017;28:2564-2570 https://doi.org/10.1681/ASN.2016101089
- Togao O, Doi S, Kuro-o M, Masaki T, Yorioka N, Takahashi M. Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology 2010;255:772-780 https://doi.org/10.1148/radiol.10091735
- Boor P, Perkuhn M, Weibrecht M, Zok S, Martin IV, Gieseke J, et al. Diffusion-weighted MRI does not reflect kidney fibrosis in a rat model of fibrosis. J Magn Reson Imaging 2015;42:990-998 https://doi.org/10.1002/jmri.24853
- Inoue T, Kozawa E, Okada H, Inukai K, Watanabe S, Kikuta T, et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol 2011;22:1429-1434 https://doi.org/10.1681/ASN.2010111143
- Woo S, Cho JY, Kim SY, Kim SH. Intravoxel incoherent motion MRI-derived parameters and T2* relaxation time for noninvasive assessment of renal fibrosis: an experimental study in a rabbit model of unilateral ureter obstruction. Magn Reson Imaging 2018;51:104-112 https://doi.org/10.1016/j.mri.2018.04.018
- Clatworthy MR, Kettunen MI, Hu DE, Mathews RJ, Witney TH, Kennedy BW, et al. Magnetic resonance imaging with hyperpolarized [1,4-13C2]fumarate allows detection of early renal acute tubular necrosis. Proc Natl Acad Sci USA 2012;109:13374-13379 https://doi.org/10.1073/pnas.1205539109
- Laustsen C, Lycke S, Palm F, Ostergaard JA, Bibby BM, Norregaard R, et al. High altitude may alter oxygen availability and renal metabolism in diabetics as measured by hyperpolarized [1-13C]pyruvate magnetic resonance imaging. Kidney Int 2014;86:67-74 https://doi.org/10.1038/ki.2013.504
- Takahashi T, Wang F, Quarles CC. Current MRI techniques for the assessment of renal disease. Curr Opin Nephrol Hypertens 2015;24:217-223 https://doi.org/10.1097/MNH.0000000000000122
- van Zijl PCM, Lam WW, Xu J, Knutsson L, Stanisz GJ. Magnetization transfer contrast and chemical exchange saturation transfer MRI. Features and analysis of the field-dependent saturation spectrum. Neuroimage 2018;168:222-241 https://doi.org/10.1016/j.neuroimage.2017.04.045
- Su C, Zhao L, Li S, Jiang J, Cai K, Shi J, et al. Amid proton transfer (APT) and magnetization transfer (MT) MRI contrasts provide complimentary assessment of brain tumors similarly to proton magnetic resonance spectroscopy imaging (MRSI). Eur Radiol 2019;29:1203-1210 https://doi.org/10.1007/s00330-018-5615-8
- Jiang K, Ferguson CM, Ebrahimi B, Tang H, Kline TL, Burningham TA, et al. Noninvasive assessment of renal fibrosis with magnetization transfer MR imaging: validation and evaluation in murine renal artery stenosis. Radiology 2017;283:77-86 https://doi.org/10.1148/radiol.2016160566
- Zhang H, Kang H, Zhao X, Jiang S, Zhang Y, Zhou J, et al. Amide proton transfer (APT) MR imaging and magnetization transfer (MT) MR imaging of pediatric brain development. Eur Radiol 2016;26:3368-3376 https://doi.org/10.1007/s00330-015-4188-z
- Adler J, Swanson SD, Schmiedlin-Ren P, Higgins PD, Golembeski CP, Polydorides AD, et al. Magnetization transfer helps detect intestinal fibrosis in an animal model of Crohn disease. Radiology 2011;259:127-135 https://doi.org/10.1148/radiol.10091648
- Jiang K, Ferguson CM, Woollard JR, Zhu X, Lerman LO. Magnetization transfer magnetic resonance imaging noninvasively detects renal fibrosis in swine atherosclerotic renal artery stenosis at 3.0 T. Invest Radiol 2017;52:686-692 https://doi.org/10.1097/RLI.0000000000000390
- Liu G, Song X, Chan KW, McMahon MT. Nuts and bolts of chemical exchange saturation transfer MRI. NMR Biomed 2013;26:810-828 https://doi.org/10.1002/nbm.2899
- Wang F, Kopylov D, Zu Z, Takahashi K, Wang S, Quarles CC, et al. Mapping murine diabetic kidney disease using chemical exchange saturation transfer MRI. Magn Reson Med 2016;76:1531-1541 https://doi.org/10.1002/mrm.26045
- Wen Z, Hu S, Huang F, Wang X, Guo L, Quan X, et al. MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. Neuroimage 2010;51:616-622 https://doi.org/10.1016/j.neuroimage.2010.02.050
- Jin Y, Liu R, Xie J, Xiong H, He JC, Chen N. Interleukin-10 deficiency aggravates kidney inflammation and fibrosis in the unilateral ureteral obstruction mouse model. Lab Invest 2013;93:801-811 https://doi.org/10.1038/labinvest.2013.64
- Zhao Y, Yin Z, Li H, Fan J, Yang S, Chen C, et al. MiR-30c protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition in db/db mice. Aging Cell 2017;16:387-400 https://doi.org/10.1111/acel.12563
- Wang F, Takahashi K, Li H, Zu Z, Li K, Xu J, et al. Assessment of unilateral ureter obstruction with multi-parametric MRI. Magn Reson Med 2018;79:2216-2227 https://doi.org/10.1002/mrm.26849
- Padovano V, Podrini C, Boletta A, Caplan MJ. Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat Rev Nephrol 2018;14:678-687 https://doi.org/10.1038/s41581-018-0051-1
- van Zijl PC, Yadav NN. Chemical exchange saturation transfer (CEST): what is in a name and what isn't? Magn Reson Med 2011;65:927-948 https://doi.org/10.1002/mrm.22761
- Zu Z. Towards the complex dependence of MTRasym on T1w in amide proton transfer (APT) imaging. NMR Biomed 2018;31:e3934
- Takahashi M, Kume H, Koyama K, Nakagawa T, Fujimura T, Morikawa T, et al. Preoperative evaluation of renal cell carcinoma by using 18F-FDG PET/CT. Clin Nucl Med 2015;40:936-940 https://doi.org/10.1097/RLU.0000000000000875
- Pijl JP, Glaudemans AWJM, Slart RHJA, Kwee TC. 18F-FDG PET/CT in autosomal dominant polycystic kidney disease patients with suspected cyst infection. J Nucl Med 2018;59:1734-1741 https://doi.org/10.2967/jnumed.117.199448
- Epelboym Y, Shyn PB, Chick JFB, Hamilton MJ, O'Connor SD, Silverman SG, et al. Crohn disease: FDG PET/CT before and after initial dose of anti-tumor necrosis factor therapy to predict long-term response. Clin Nucl Med 2017;42:837-841 https://doi.org/10.1097/RLU.0000000000001844
- Cho A, Chung YE, Lee JH, Yun M, Lee JD, Kang WJ. Evaluation of 18F-FDG excretion patterns in malignant obstructive uropathy. Clin Nucl Med 2013;38:695-702 https://doi.org/10.1097/RLU.0b013e31829b2012
- Jadoul A, Lovinfosse P, Weekers L, Delanaye P, Krzesinski JM, Hustinx R, et al. The uptake of 18F-FDG by renal allograft in kidney transplant recipients is not influenced by renal function. Clin Nucl Med 2016;41:683-687 https://doi.org/10.1097/RLU.0000000000001298
- Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 2011;7:684-696 https://doi.org/10.1038/nrneph.2011.149
- Zhang XY, Wang F, Li H, Xu J, Gochberg DF, Gore JC, et al. CEST imaging of fast exchanging amine pools with corrections for competing effects at 9.4 T. NMR Biomed 2017;30:e3715