• Title/Summary/Keyword: Smoke ventilation

Search Result 206, Processing Time 0.026 seconds

밀폐된 공간에서 환기에 의한 ETS 성분 제거

  • 황건중;이문수;나도영
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.1
    • /
    • pp.102-108
    • /
    • 1999
  • This study was conducted to evaluate the ventilation to remove gases, vapor and particles of environmental tobacco smoke(ETS) in a closed room. The ventilation rate choosed were 0.445 ㎥/min, 0.528 ㎥/min, and 0.625 ㎥/min. ETS components measured were total suspended particle(TSP), ultraviolet particulate matter(UVPM), fluorescent particulate matter(FPM), solanesol, carbon dioxide($CO_2$), carbon monoxide(CO), nicotine, and 3-ethenylpyri-dine(3-EP). The concentration of ETS components measured rapidly decreased as increasing ventilation rate, but the removal efficiency by ventilation was different from each ETS compounds. The $CO_2$, and CO, gaseous components of ETS, were dominant components to be removed from the room by ventilation. The ventilation with 0.528 ㎥/min for 1 hr was enough to remove over 99% of those gaseous components. Nicotine and 3-EP needed the ventilation for 2 hrs to reduce over 95 % of those components. As the same ventilation rate, 99 % of TSP and solanesol concentration were removed from the room within 2 hrs, UVPM and FPM concentration decreased 90 %.

  • PDF

A Study on the Design Factors of Complex Damper for Ventilation and Fire Protection (환기 및 소방용 복합댐퍼의 설계인자에 관한 연구)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.42-47
    • /
    • 2011
  • This study carried out the design and analysis of complex damper as basis study for development of complex damper for ventilation and fire protection. This study established design and analysis theory of complex damper based on process, kinematics mechanism and mechanism modelling of complex damper. And this study established engineering data construction and a source technology that can design each element of complex damper through motion analysis simulation based on design and analysis theory. Therefore, it got result that can apply comprehensively in development of complex damper for ventilation and fire protection from this study. Also, it sees that can ready control means and technological countermeasure of smoke to developed of complex damper with this study.

Scaled model tests for improvement and applicability of the transverse smoke control system on tunnels (횡류식 제·배연 시스템의 개선 및 적용성 분석을 위한 모형실험 연구)

  • Kim, Hyo-Gyu;Baek, Doo-San;Kim, Jae-Hyun;Lee, Seong-Won;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.563-574
    • /
    • 2020
  • Currently, road tunnels and railroad tunnels are building smoke control systems to emit toxic gases and smoke from fires. Among the various smoke control systems, the transverse smoke control system has the disadvantage that air supply or exhaust is performed on only half of the cross-section, rather than air supply or exhaust on the entire cross-section of the tunnel as air is supplied or exhausted by partitioning the wind path. Therefore, this study analyzed the effect of exhaustion through numerical analysis and scaled model tests on the zoning smoke control system, which improved the limitations of the transverse smoke control system. As a result of the scaled model test, the transverse ventilation system exhibited a 25.6% smoke control rate based on the state where no smoke was controled, and zoning smoke control system showed a smoke control rate of 40.8%. In addition, as a result of numerical analysis, it was found that transverse ventilation system did not control fire smoke spreading from the tunnel and continued to spread. On the other hand, zoning smoke control system was found to be smoke controled within a certain section due to the air curtain effect and the flue gas effect.

An experimental study on the smoke-spread region before reaching the critical velocity for the case of fires in tunnels employing longitudinal ventilation system (종류식 환기 시스템에서 임계속도 도달 전 스모크 확산 영역에 관한 실험적 연구)

  • Ki, Young-Min;Yoon, Sung-Wook;Yoon, Chan-Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.526-535
    • /
    • 2006
  • An experimental study was carried out on a reduced scale tunnel model to grasp the behavioral feature of fire-induced smoke in the long tunnels. Based on Froude modeling, the 1/50 scaled tunnel model (20 m long) was constructed by acrylic tubes and paraffin gas was released inside the tunnel to simulate the 20 MW fire-induced smoke. me test results show, that after approximately 2 minutes of fire generation, was descended from the tunnel ceiling through the decrease of buoyancy, then it was symmetrically propagated about 90 meters for 4 minutes before jet fans were operated. The smoke was effectively controlled when the jet fans were operated and an air stream velocity was getting closed to reach a critical velocity (the minimum air velocity that requires to suppress the smoke spreading against the longitudinal ventilation flow during the tunnel fire situations). It was also found out that a range of smoke was spreaded about 3 meters from the origin of fire but the range was not propagated to the escape direction anymore. The early stage of the In operation, however, showed that the smoke was hardly controlled. It means that the operation of emergency ventilation system has many dangerous factors such as an intercepting breathing zone.

Numerical Investigation on Smoke Behavior in Rescue Station for Tunnel Fires (철도터널 화재 시 구난역 내의 연기거동에 대한 수치해석 연구)

  • Hong, Sa-Hoon;Ryou, Hong-Sun;Lee, Seong-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1740-1746
    • /
    • 2008
  • The present study performed numerical investigation to analyze the smoke behavior in the rescue station by using the commercial CFD code (FLUENT Ver 6.3). The present study adopted a 10MW ultrafast mode for simulation, and it also used the MVHS(Modify Volumetric Heat Source) model modified from the original VHS(Volumetric Heat Source) model in order to treat the product generation and the oxygen consumption under the stoichiometric state. In addition, the present simulation includes the species conservation equation for the materialization of heat source and the estimation of smoke movement. From the results, the smoke flows are moving along the ceiling because of thermal buoyancy force and as time goes, the smoke gradually moves downward at the vicinity of the entrance. Moreover, without using ventilation, it is found that the smoke flows no longer spread across the cross-passages because the pressure in the non-accident tunnel is higher than that in the accident tunnel.

  • PDF

A Study on the Effective Fire and Smoke Control in Semi-Transverse Ventilation (균일배기 환기방식에서의 배연특성에 관한 연구)

  • Jeon, Yong-Han;Kim, Jong-Yoon;Seo, Young-Ho;Yoo, Oh-Ji;Han, Sang-Pil
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.90-94
    • /
    • 2010
  • In this study it is intended to review the moving characteristics of smoke by performing visualization simulation for the calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, if it was assumed 0 critical velocity in the tunnel, the smoke exhaust air volume was limited within 250 meter in the road-tunnel disaster prevention indicator and the exhaust efficiency was from 55.1% to 95.8% in the result of this study. If the wind velocity is in the tunnel, the exhaust rate intends to increase rapidly and the exhaust efficiency is decreased. In addition, if the wind velocity is increased, the exhaust rate should be increased in compared with the generation rate of smoke in maximum 1.8 or 1.04 times. In this study, when the wind velocity is in the tunnel, the limited exhaust rate is $84m^3/s{\cdot}250m$. And if it was assumed 1.75 m/s critical velocity in the tunnel, the exhaust rate would be defined $393m^3/s{\cdot}250m$($Q_E$ = 80 + 5Ar).

The Effects of Tunnel Geometrical Characteristics and Canopy Installation on the Ventilation and Fire Propagation (터널의 기하학적 형태 및 캐노피 설치가 터널 환기 및 화재 확산에 미치는 영향 분석)

  • Lee, Chang-Woo;Suh, Ki-Yoon;Kim, Jung-Wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.325-334
    • /
    • 2006
  • Understanding the airflow characteristics within the canopy structure installed between closely adjacent tunnels either for light adaptation or for protection from snow hazards is required for the normal ventilation as well as safety system design. Grade, horizontal alignment, cross-sectional area and shape are known to substantially influence the fire smoke behavior and their influences raise great concern for the safety design. This paper aims at studying the effects of tunnel geometrical characteristics and canopy installation on the ventilation and fire propagation through CFD analysis. In the case of 145m long canopy, 50% opening ratio is preferred with respect to the airflow pattern and ventilation efficiency. When a 20MW fire occurs in a 1.8km-long tunnel and four 1250mm reversible jet fans are instantly turned on, smoke concentration at 40m downstream of the fire decrease 13% for the upgrade tunnel with 2% gradient and increases 20% for -2% gradient, compared to the standard horizontal tunnel. Backlayering is observed within 45m-long segment toward the entrance in 2% down-graded tunnel. In a rectangular tunnel, there is no significant difference of smoke concentration as well as velocity profile from the standard crown tunnel. Three-laned tunnel shows lower level of both profiles and backlayering is detected up to 50m upstream of the fire, while the risky situation rapidly disappears thereafter.

Smoke Control According to the Ventilation Capacity in Subway Tunnel Fire: I. FDS Simulation (지하철 터널 화재시 환기시설의 용량에 따른 제연효과 I. FDS 시뮬레이션)

  • Park, Kyung-Jun;Lee, Ki-Jun;Hadi, Bettar El;Lee, Jai-Hyo;Shin, Dong-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.31-38
    • /
    • 2011
  • In this study, we investigate simulation studies to confirm the removal of smoke through ventilation when the subway car is on fire and stopped in an underground subway tunnel, by using Fire Dynamics Simulator (FDS) which is being upgraded by NIST. The structure of subway tunnel and train for simulation modeling are based actual data from Seoul metropolitan subway. The main purpose of this study is to assure the removal efficiency of the ventilation when changing the ventilation capacity between 2.0 m/s and 3.0 m/s. The results of the study shows that carbon monoxide (CO) and carbon dioxide ($CO_2$) are reduced by about 35% as the ventilation capacity is increased by 0.5 m/s. This study also performs the grid sensitivity verification of FDS for improved accuracy of the results. To find the effective size of the grid, three cases are simulated and the results are compared.

The Effect of Paper Permeability on Cigarette Properties (종이의 투기도가 담배 물성에 미치는 영향)

  • 김영호;한영림;이문용;이영택;김정열
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.64-72
    • /
    • 2001
  • The cigarette ventilation affects not only the amount of tar and nicotine delivery by a cigarette, but also the composition of the smoke. Therefore, it is important to stabilize of variability in cigarette ventilation that would be affected by changes in cigarette components. This work was conducted to determine the major factors that influence the cigarette ventilation and also to provide fundamental informations for improving the uniformity of cigarette performances. To evaluate the effect of cigarette ventilation as a dependant variable, the three independent factors were the air permeability of plugwrap, tipping paper and the filter pressure drop. We determined the effect of paper permeability on ventilation variability and the optimum condition in combinations of independent factors. The mean of cigarette ventilation was increased as plugwrap permeability increases, particularly at 26,000 CU. However, it was exhibited that standard deviation and coefficient of variation of the cigarette ventilation were decreased with increasing plugwrap permeability. At the 600 CU and 1,200 CU of tipping paper permeability, process capability index (Cp) of the cigarette ventilation increased as plugwrap permeability increases. Following the optimum condition of cigarette ventilation induced by fitted regression equation, one was to optimize 50% ventilation level is by combination with plugwrap permeability of 16,000 CU, tipping paper permeability of 810 CU, filter pressure drop of 319 mm$H_2O$, respectively.

  • PDF

The effects of introduction of diesel passenger cars on the ventilation requirements for road tunnels (경유승용차 도입이 터널 소요환기량에 미치는 영향분석)

  • Kim, Hyo-Gyu;Song, Seok-Hun;Kim, Nam-Young;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.309-321
    • /
    • 2007
  • Since the first diesel passenger car hit the local road in late 2005, the share of diesel cars is growing significantly; possibly up to the level as in the western Europe. In this study, the effects of introduction of diesel passenger cars on the ventilation rate and facility capacity are analyzed for the three individual cases with different basic exhaust rate based on the vehicle age, the vehicle class percentage and the smoke exhaust rate. The target tunnel for this comparative study is a typical 2 km-long 2-lane highway tunnel. Case 1 assuming the current local design standards and the diesel vehicles comprising 40% of the total passenger cars on the road required more ventilation rate and facility capacity than in the case only with the current standards. Case 2 which is the real tunnel currently in the designing stage taking into account the vehicle age but ignoring the diesel vehicle ratio, and Case 3 on the contrary considering the both factors show similar level of ventilation characteristics as EURO-3 emission regulation. Application of the emission standard set by the Ministry of Environment for newly manufactured vehicles in the current local tunnel design standard indicates higher requirements than for EURO-2 regulation, whereas the emission standard came into effect in 2006 results in the ventilation characteristics similar to EURO-4. This study aims at providing fundamental information for assessing the basic emission rate and determining the optimal ventilation rate and facility capacity considering the growing percentage of diesel cars and gradually decreasing level of smoke emission forced by the relevant laws.

  • PDF