• Title/Summary/Keyword: Smoke ventilation

Search Result 206, Processing Time 0.029 seconds

An Experimental Study of Smoke Movement in Tunnel Fires with a Vertical Shaft (수직갱이 설치된 터널내 화재시 연기거동에 관한 실험적 연구)

  • 이성룡;유홍선;김충익
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.135-141
    • /
    • 2004
  • The present paper concerns a smoke movement in a tunnel fire with a vertical shaft. The model tunnel measured 13.4m long, 0.4m wide and 0.4m high. The cross section is 1: 20 of a full scale tunnel. Ethanol was used as a fuel. The fire size in model tests varied from 1.35 kW to 13.37 kW, which corresponds to full scale fires of 2.41 to 23.91 MW. Smoke front velocity and temperatrue were decreased due to the vertical shaft install. Temperature was reduced maximum about 2$0^{\circ}C$ at ceiling and about 23$^{\circ}C$ at vertical position. CO concentration was reduced as the vent width widened. When vent width was more than 15 cm, CO concentration was not reached 100 ppm. Descent degree of the smoke layer was confirmed through the visualization.

Estimating Door Open Time Distributions for Occupants Escaping from Apartments

  • Hopkin, Charlie;Spearpoint, Michael;Hopkin, Danny;Wang, Yong
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.1
    • /
    • pp.73-83
    • /
    • 2021
  • The door open time, resulting from occupants evacuating from apartments, is an important parameter when assessing the performance of smoke ventilation systems in high-rise apartment buildings. However, the values recommended in UK design guidance appear to have limited substantiation. Monte Carlo simulations have been carried out considering variabilities in door swing time, flow rate and number of occupants. It has been found that the door open time can be represented by a lognormal distribution with a mean of 6.6, 8.7 and 11.1 s and a standard deviation of 1.7, 3.2 and 4.7 s for one, two and three-bedroom apartments, respectively. For deterministic analyses, it is proposed that the 95th percentile values may be adopted in line with recommended practice for other fire safety design parameters such as fuel load density and soot yield, giving door open times of 10 s to 19 s, depending on the number of bedrooms.

A Numerical Study on Smoke Movement in Longitudinal Ventilation Tunnel Fires Using a Zone Model (존 모델을 이용한 종류식 배연 터널 화재시 연기 거동에 대한 수치해석적 연구)

  • Kim, Hyun-Jeong;Roh, Jae-Seong;Kim, Dong-Hyeon;Jang, Yong-Jun;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1319-1324
    • /
    • 2007
  • Many researches have been performed to analyze the smoke movement in tunnel fires by using field model. Recently, FDS(Fire Dynamics Simulator) v.4, which is one of the field model and developed from NIST(National Institute of Standards and Technology), is widely used. In tunnel fires, FDS can show detail results in local point, but it has difficulties in boundary condition and taking long computing time as the number of grid increases. So, there is a need to use alternative method for tunnel fire simulation. A zone model is different kind of CFD method and solves ordinary differential equation based on conservation and auxiliary equations. It shows good macroscopic view in less computing time compared to field model. In this study, therefore, to confirm the applicability of CFAST in tunnel fire analysis, numerical simulations using CFAST are conducted to analyze smoke movement in longitudinal ventilation reduced-scale tunnel fires. Then the results are compared with experimental results. The differences of temperature and critical velocity between numerical results and experimental data are over $30^{\circ}C$ and 0.9m/s, respectively. These values are out of error range. It shows that CFAST 6.0 is hard to be used for tunnel fire simulation.

  • PDF

A Study on the Model Experiment for Smoke Flow in Road Tunnel Fire (도로터널 화재발생시 연기유동에 관한 축소모형실험 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon;Kang, Se-Gu;Ahn, Kyung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.141-149
    • /
    • 2004
  • In this study, smoke movement in tunnel fire with natural and longitudinal ventilation systems has been investigated. Reduced-scale experiments were carried out under the Froude scaling using 14.55kW fire source with a wick and experimental data is obtained with 1/18 model tunnel test. Temperature profiles were measured under the ceiling and vertical direction along the center of the tunnel and poisonous gas was measured at emergency exit point. The results show that refuge time for 225m intervals of emergency exit in case of natural ventilation systems is 256 seconds and critical velocity for sufficient back-layer prevention is 2.8m/s for fire strength of 20MW.

  • PDF

Computational study of road tunnel exposure to severe wind conditions

  • Muhic, Simon;Mazej, Mitja
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.185-197
    • /
    • 2014
  • Ventilation and fire safety design in road tunnels are one of the most complex issues that need to be carefully considered and analysed in the designing stage of any potential upgrade of ventilation and other fire safety systems in tunnels. Placement road tunnels space has an important influence on fire safety, especially when considering the effect of adverse wind conditions that significantly influence ventilation characteristics. The appropriate analysis of fire and smoke control is almost impossible without the use of modern simulation tools (e.g., CFD) due to a large number of influential parameters and consequently extensive data. The impact of the strong wind is briefly presented in this paper in the case of a longitudinally ventilated road tunnel Kastelec, which is exposed to various severe wind conditions that significantly influence its fire safety. The possibility of using CFD simulations in the analysis of the tunnel placement in space terms negative effect of wind influence on the tunnel ventilation is clearly indicated.

Effect of Acetate Tow Denier and Porous Plug Wrapping Paper on the Ventilation of Filter Cigarettes (아세테이트 토우 데니아와 필터권지 기공도가 담배 연기희석에 미치는 영향)

  • 이근회;김성한;심철호;양광규
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.5 no.2
    • /
    • pp.77-82
    • /
    • 1983
  • The ventilation of cigarette samples made by the combination of various acetate tow denier and porous plug wrapping paper have been investigated The ventilation rate increased no longer in the acetate tow with high mono denier and low total denier but changed slightly in that with low mono denier and high total denier when the porosity of plug wrapping paper was more than 6500cm/min. cbar. Tip pressure drop ratio, Y, was significantly influenced by tip ventilation rate, X. i. e., Y = 1.0880-0.0042x The relationships of ventilation rate, $X_v$. and smoke delivery, Y, were as follows; Tar : $Y_r$= -14.0458-0.1650$X_v$ Nicotine : $Y_N$= - 1.1045-0.0125$X_v$ CO : $Y_{co}$=17.2806-0.2090$X_v$

  • PDF

THE EXAMINATION OF ACCURACY OF FIRE-DRIVEN FLOW SIMULATION IN TUNNEL EQUIPPED WITH VENTILATION (환기가 있는 터널에서의 화재유동 해석의 정확성에 대한 고찰)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Kim, Hag-Beom;Jung, Woo-Sung
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.115-122
    • /
    • 2009
  • Numerical methods are applied to simulate the smoke behavior in a ventilated tunnel using large eddy simulation (LES) which is incorporated in FDS (Fire Dynamics Simulator) with proper combustion and radiation model. In this study, present numerical results are compared with data obtained from experiments on pool fires in a ventilated tunnel. The model tunnel is $182m(L){\times}5.4m(W){\times}2.4m(H)$. Two fire scenarios with different ventilation rates are considered with two different fire strengths. The present results are analyzed with those from LES without combustion and radiation model and from RANS ($\kappa-\epsilon$) model as well. Temperature distributions caused by fire in tunnel are compared with each other. It is found that thermal stratification and smoke back-layer can be predicted by FDS and the temperature predictions by FDS show better results than LES without combustion and radiation model. The FDS solver, however, failed to predict correct flow pattern when the high ventilation rate is considered in tunnel because of the defects in the tunnel-inlet turbulence and the near-wall turbulence.

A Study on Jet Fan Start Time in Medium-Length Tunnel Fires (중규모터널 방재용 제트팬 초기 가동시간에 관한 연구)

  • Kim, Doo-Young;Lee, Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.465-474
    • /
    • 2010
  • Although the number of medium-length road tunnels, less than 1 km in length, has increased recently more than 30 percent each year, their ventilation and fire safety system design guidelines have not been established yet. The guidelines for long tunnel design are adopted even for the medium-length road tunnels. Therefore the necessity is brought up to optimize the ventilation and fire safety systems based on their own design guidelines. This study aims at determining the optimal start time of jet fan in case of 20 MW fires by analyzing smoke backlayering range, temperature distribution, range of poor visibility, evacuation time and critical velocity. The CFD study results are expected to contribute to propose the optimal fan operation mode.

A study on the operation characteristics of oversized exhaust port applicable to double-deck tunnel (복층터널에 적용 가능한 화재 연동형 대배기구 운영 특성 분석 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Yangkyun;Park, Byoungjik;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.887-895
    • /
    • 2019
  • Recently, the number of underground road development projects has been increasing to solve traffic problems in the national capital region and metropolitan areas with intensified overcrowding, and there has been a tendency to plan underground roads by applying a double-deck tunnel technology that has advantages in constructability and economical efficiency. The double-deck tunnel has a structure where one excavation section is divided into two parts and used as up and down lines, and is mainly used as a road for small vehicles only due to its low floor height. In addition, due to the small cross-sectional area, it has characteristics different from those of general road tunnels in terms of ventilation and disaster prevention. In this regard, this study proposed an operational plan that applies an oversized exhaust system, which is one of semi-transverse ventilation systems, to small cross-sectional tunnels like double-deck tunnel with low floor height, and a comparative analysis between smoke exhaust characteristics according to the fire occurrence locations and oversized exhaust systems was conducted using the Fire Dynamics Simulator (FDS). The results showed that unlike uniform exhaust, intensive smoke exhaust using the oversized exhaust port maximized the delay effect of smoke diffusion and limited the smoke within 50 m above and below the fire point.

Additional Improvement and Evaluation of Exhaust Ventilation Systems at Small and Medium Sized Enterprise (중.소규모 사업장의 국소배기장치 설치 실태와 문제점 및 개선방안)

  • Lim, Seong-Keun;Park, Doo-Yong;Kim, Won-Ki;Kim, Soo-Geun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Objectives : The purposes of this study were to evaluate exhaust ventilation systems(EVSs) and to suggest problems and improvements. Methods : For 50 small and medium-sized enterprises, we carried out evaluation of EVSs. We evaluated hoods with smoke tester and measurement of capture velocity. In addition, we used several indicators for performance evaluation designed in this study. Results : 1. Based on the smoke flow pattern and the criteria of occupational health and safety act, 67.8% of hoods were rated 'good' level at smoke test whereas 26.3% were rated 'good' level at measurement of capture velocity. 2. 29.3% of hoods, of which ratio of measured actual air flow at hood(Qah) to required ideal exhaust air flow at hood(Qih) was 1 or more, were rated 'good' level. 3. The % of EVS, of which ratio of measured actual air flow at stack(Qast) to total required ideal exhaust air flow at hood(Qith) was 1 or more, was 29.0%. 4. For the ratio of measured Qast to existing air flow at fan(Qfan), only 5% of EVSs were 1 or more and 26.0% were 0.8 or more but less than 1.0. 5. For the ratio of measured Qast to total measured actual exhaust air flow at hood(Qath), 74.0% were 0.8 or more but less than 1.0. 6. The percentage of EVS, of which ratio of total measured Qath to existing Qfan was 0.8 or more, was 19.0%. 7. The percentage of EVS, of which ratio of total measured Qath to total required ideal exhaust Qith was 1 or more, was 26.0%. 8. For the comprehensive evaluation indicators designed in this study, 29.0% were 0.8 or more. Conclusions : We found that few exhaust local ventilations at small and medium-sized enterprises were rated 'good' level and that most exhaust local ventilations had 'poor' design and installation. Therefore, relevant professional manpower and enterprises have to construct exhaust local ventilation where it is needed, and technical guidance and economic support are needed to improve 'poor' exhaust local ventilation after self-evaluation.