• Title/Summary/Keyword: Smoke Evacuation

Search Result 212, Processing Time 0.027 seconds

A Study on Appropriateness of Performance Criteria of Smoke Control System for Underground Spaces (I) (지하공간에 대한 제연설비 성능기준의 적정성 고찰(I))

  • Ahn, Chan-Sol;Kim, Heung-Youl;Yoo, Yong-Ho;Jeon, Gyu-Yeop
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.103-106
    • /
    • 2008
  • This study is intended to evaluate the characteristics of smoke spreading and the appropriateness of evacuation time extended by operation of smoke control system during fire within the underground space of the building structured in compliance with the smoke control system performance criteria from the local fire safety standard, which has been currently applied to the buildings in Korea. Using the heat release per unit weight of the combustibles, a numerical analysis both in case of smoke control system in operation and the system not in operation was carried out at the several different shopping malls. From the viewpoint of securing the evacuation time, the results were compared in an attempt to assess the appropriateness of the fire safety criteria.

  • PDF

A Study on the Evacuation Performance Review for the Office Buildings (업무용 빌딩의 피난 성능 검토에 관한 연구)

  • 오혁진;백승태;김우석;이수경
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • In this study, it reviewed about evacuation performance of a specified Office Building. assessment tools is FAST 3.1.7 (Estimation of Flash Over, Estimation of Layer Height Down Flow Time), SIMULEX 32-bit (Estimation of Evacuation Time), JASMINE 3.25d. (Smoke Flow Assessment of a specified time) Result from Fire Scenario # 1, Flash Over is not generated in Compartment. Evacuation Time is estimated 25.2 sec by SIMULEX 32-bit. layer height until this time (25.2 sec) was estimated 2.4 m by FAST 3.1.7. After ignition until this time (25.2 sec), smoke was not release to the a corridor. In consequence, We concluded that people in building are completing the safe evacuation without the damage of smoke. Result from Fire Scenario # 1, Flash Over generated 6 min 33.2 sec in Compartment. Evacuation Time is estimated 1 min 25.5 sec by SIMULEX 32-bit. layer height down flow time is 1 min 40.8 sec by FAST 3.1.7 and 5 min 23 sec by theoretical calculation. Also, total building evacuation time was estimated 2 min 26.6 sec. After ignition until this time (2 min 26.6 sec), smoke released to the a corridor but it amount was few little. Therefore, generated smoke in compartment not effected to the people in buildings.

A Study on Certification Requirements and Means of Compliance about In-Flight Smoke (비행 중인 항공기에 발생할 수 있는 연기에 대한 인증기준 및 적합성 입증방법)

  • Jeong, Bonggu;Jin, Yongkwon;Kim, Yougwang;Park, Guenyoung
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.7-12
    • /
    • 2007
  • From the beginning of aviation history, in-flight smoke/fire events have been a serious issue. As aircraft are getting larger and are becoming more auto-piloted and aircraft systems are getting more complex, it is an increasing risk of in-flight smoke/fire accidents accompanied with fire events. Therefore, we review the statistics of fire/smoke accidents in order to enhance an understanding for risk of in-flight smoke events, and present the certification requirements for smoke per KAS Part 25. In addition, we provide acceptable methods of complying with related requirements, such as smoke detection test, smoke penetration test and smoke evacuation test.

  • PDF

Numerical Study on the Smoke Movement and Evacuation in the Deeply Underground Subway Station Fire (대심도 지하역사에서의 화재시 연기거동과 피난에 대한 수치해석 연구)

  • Kim, Hong-Jin;Bae, Sung-Yong;Choi, Young-Ki;Hong, Gi-Bae;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1342-1347
    • /
    • 2011
  • Advantages of the deeply underground subway are underground space efficiency, high speed, decrease of noise and vibration. However, when fire occurs in the deeply underground subway station, large casualties are occurred like Daegu subway station fire due to the increase of evacuation distance. In this study, a numerical analysis was performed by using the fire and evacuation analysis program FDS+EVAC for smoke movement and evacuation in Beotigogae station among the deeply underground subway station. Heat release rate of carriage fire was set 10MW and the fire growth rate was ultrafast. As a result, the smoke move to the exit at 1085 second. The total evacuation time took 956 second.

  • PDF

A Study on the Visibility Measurement of CCTV Video for Fire Evacuation Guidance (화재피난유도를 위한 CCTV 영상 가시도 측정에 관한 연구)

  • Yu, Young-Jung;Moon, Sang-Ho;Park, Seong-Ho;Lee, Chul-Gyoo
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.12
    • /
    • pp.947-954
    • /
    • 2017
  • In case of a fire in urban large structures such as super high-rise buildings, evacuation guidance must be provided to the occupants in order to minimize human deaths and injuries. Therefore, it is essential to provide emergency evacuation guidance when a major fire occurs. In order to effectively support evacuation guidance, it is important to identify major items such as fire location, occupant position, escape route, etc. Also, it is important to quickly identify evacuation areas where residents can safely evacuate from a fire. In this paper, we analyze the CCTV video and propose a method of measuring visibility of the evacuation zone from the smoke caused by the fire in order to determine the safety of evacuation area. To do this, we first extract the background video from the smoke video to measure the visibility of the specific area due to smoke. After generating an edge-extracted image for the extracted background video, the degree of visibility is measured by calculating the change in the edge strength due to smoke.

Evacuation Simulation of High-Rise Building Fires Considering Temperature and Smoke (열화와 연기를 고려한 고층 건물 화재시의 대피 시뮬레이션)

  • Lee, Bum-Jong;Park, Jong-Seung;Rie, Dong-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.703-707
    • /
    • 2008
  • This paper proposes a method of design and implementation a simulation system in which humans can plan their evacuation paths in a high-rise building considering damages from high temperature and smoke in case of fire. Humans in evacuation search the nearest exit and follow a path to the exit. When humans are evacuating toward an exit, they are going to move with their highest speeds. However, many environmental factors prohibit their fast movements. In this paper, we calculate the evacuation speed of each human considering temperature damage and smoke damage. We restrict the number of humans that can be evacuated per second according to the actual size of the exit door. Experimental results showed that the evacuation speed is affected by the temperature condition and the smoke density.

  • PDF

An Experimental Study of Smoke Movement and Evacuation in Road Tunnel (도로터널내 연기거동 및 피난에 관한 실험적 연구)

  • Kang Hyun-Wook;Lee Ho-Seok;Shin Young-Wan;Lee In-Ki
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.335-340
    • /
    • 2005
  • Recently, According to increased tunnel accident, a matter of concern in tunnel fire safety is on an interesting trend. In case of tunnel fire, Evacuation is a primary factor for refugee safety. Therefore safety measures should be taken to increase capability of evacuation. Evacuation walking speed and characteristics of movement in tunnel is differ from building or outdoor site so, these characteristics must be considered in tunnel safety planning. In this study has performed to evaluate the smoke movement and characteristics of evacuation by full-scale test method. and aimed for basic data establishment in characteristics of evacuation for tunnel safety system design.

  • PDF

A Case Study on the Passengers' Evacuation Times according to the Fire Smoke Density On a Ship (선박 화재 시 선내의 연기농도가 승객의 피난시간에 미치는 영향)

  • Hwang, Kwang-Il;Shin, Dong-Keol;Kim, You-Jin;Youn, Jeong-Ha;Lee, Sang-Il;Hong, Won-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.336-343
    • /
    • 2009
  • Because ships are very isolated and independent objects when sailing on the ocean, if a fire and smoke occurs, nobody can be sure to escape safely from ship at the moment. On the focus of the relationship between the sight transmissivity by fire smoke density and the life safety, this study performs simulations and experiments, respectively. To evaluate the theoretical evacuation time, CFAST software which is known as a 2 zone model analysis tool is used, and the result is 54 seconds from ECR(Engine Control Room) exit to upper deck exit and 34 seconds from bosun store to upper deck exit. And totally 12 types of experiments are performed with other 10 persons per experiment. As the result, it is cleared that the low sight transmissivity leads to the low life safety and the obstruction which can be happen unexpectedly on the evacuation way on fire makes it worse. At the condition of the smoke density 0%, over 90% people arrive at upper deck exit safely. But with the transmissivity of 8%, 70%(from ECR) and 30%(from bosun store) among experiment persons of each can survive, and with same density and unexpected obstruction, the survival ratio goes down to only 20% and 10%.

A Study on the Consideration Factors for the Calculation of Elevator Evacuation Time (엘리베이터 피난계산 고려인자에 관한 연구)

  • Kim, Hak-Joong;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2010
  • It is more important to study for reducing the evacuation time of occupant in fire, because the building has been taller and deeper. It has known that elevator was not safe in fire situation. So, the using elevator for evacuation has been prohibited. But the study of elevator evacuation is progressed with designing the elevator safe from flame and smoke. This study analyze the consideration factors for the calculation of elevator evacuation time. The factors for elevator evacuation calculation is starting time, round trip time. And round trip time is divided into standing time and travel time. The elevator evacuation time can be calculated by compounding these factors and adding the efficiency. For using elevator to evacuate, we need additional study for smoke control, compartment, water proof and safe electric power supply.

A Study of Heat St Smoke Evacuation Characteristics by the Changing of Operational Method of Tunnel Fan Shaft Ventilation System for Fire on Subway Train Vehicle (지하철 화재시 본선터널 환기시스템에 따른 열 및 연기배출특성)

  • 이동호;유지오
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.62-69
    • /
    • 2003
  • The smoke control system in subway platform is not only using for smoke exhaust facility but also using ventilation system. For this reason, smoke vent effectiveness is depending on its position, ventilating volume capacity and the vent method. In this study, the passenger's evacuation time was calculated for the case of fire on sloped subway train vehicle in subway platform. In order to recommend the mechanical smoke exhaust operation mode, SES (Subway Environmental Simulation) was used to predict the airflow of the inlet and outlet tunnel for the subway station. Fire dynamics Simulator(FDS) was used the SES's velocity boundary conditions to calculate the smoke density and temperature under the condition of fire on stopped subway train vehicle at the platform. We compared smoke density and temperature distributions for each 6 types of smoke exhaust systems to clarify the characteristics of smoke and hot air exhaust effectiveness from the result of fire simulation.