• 제목/요약/키워드: Smith predictor controller

검색결과 56건 처리시간 0.027초

Digital Current Controller with Smith-Predictor for PWM Converters

  • 이진우
    • 전력전자학회논문지
    • /
    • 제1권1호
    • /
    • pp.7-11
    • /
    • 1996
  • From the cost-effective point of view, it is very important to design a current with the highest utilization factor of current capacity of power devices. This can be accomplished by a current controller without overshoot irrespective of the varying bounds of control voltage in PWM converters and the dead time due to the time delay. This paper suggests a novel decoupled controller with Smith-Predictor which has the fast control response without overshoot and steady stats error and also deal with the design method of the controller for PWM converters. The extensive digital simulations done by SIMULINK/MATLAB show that the suggested controller guarantees the full utilization of current capacity of power devices and the decoupled current control behavior.

  • PDF

입력 시간지연이 존재하는 소형 1축 로봇 팔 위치제어를 위한 강인 제어기 설계 (Design of a Robust Controller for Position Control of a Small One-Link Robot Arm with Input Time-Delay)

  • 정구종;김인혁;손영익
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1179-1185
    • /
    • 2010
  • This paper deals with a robust controller design problem for a small one-link robot arm system subject to input time delay and load variations. The uncertain parameters of the system are considered as a disturbance input. A disturbance observer(DOB) has been designed to alleviate disturbance effects and to compensate performance degradation owing to the time-delay. This paper employs a new DOB structure for non-minimum phase systems together with the Smith predictor. We propose a new controller for reducing the both effects of disturbance and time-delay. In order to test the performance of proposed controller, four different other control laws are compared with the proposed one by computer simulations. The simulation results show the effectiveness of the proposed control method.

플랜트 PPI 제어기의 모델 불일치를 위한 제어변수 추정 (The Control Parameter Estimation for Model Mismatch of Plant′s PPI Controller)

  • 신강욱;박준열
    • 조명전기설비학회논문지
    • /
    • 제18권2호
    • /
    • pp.49-54
    • /
    • 2004
  • 공정제어에 있어서, 긴 시간지연은 시스템의 효과적인 제어성능을 기대하기 어렵기 때문에 공정의 모델을 이용한 스미스 예측기와 이를 이용한 PPI 제어기 등이 제안되었다. 그러나, 이들 제어기는 실 플랜트와 모델간에 존재하는 오차 때문에 실제 플랜트에서는 원하는 제어성능을 보장할 수 없다. 따라서, 본 논문에서는 이러한 모델 불일치에 의해 발생되는 오차를 보상할 수 있도록 새로운 제어변수 추정전략을 제시하였다. 또한, 이러한 추정전략은 다양한 사례를 통하여 유용한 결과를 얻었다.

강인한 특서을 갖는 지연시간 보상기의 설계 (Design of Dead Time Compensator with Robustness)

  • 박귀태;이기상;김성호
    • 대한전기학회논문지
    • /
    • 제41권2호
    • /
    • pp.199-208
    • /
    • 1992
  • MIESF(Modified Integral Error and State Feedback) controller suggested in order to control the processes with time delay is the control scheme that combines Smith predictor and IESF(Integral Error and State Feedback). This control scheme has better performance than the conventional PID controller incorporating Smith predictor with respect to the robustness and control performance for the modelling error. MIESF controller can be simply designed by pole assignment algorithm. BUT in such a case, it is difficult to find proper poles which gurantee robustness with respect to process parameter uncertainties. In order to solve the aforementioned difficulties, we suggest a new design method for MIESF controller and show the validity of the proposed design method.

관절경 수술을 위한 관주(灌注)시스 (Irrigation Pumping System) 제어기의 개발 (Design of Irrigation Pumping System Controller for Operational Instrument of Articulation)

  • 김민수;이순걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1294-1297
    • /
    • 2003
  • With the development of medical field, many kinds of operations have been performed on human articulation. Arthroscopic surgery, which has Irrigation Pumping System for security of operator vision and washing spaces of operation, has been used for more merits than others. In this paper, it is presented that the research on a reliable control algorithm of the pumping system instrument for arthroscopic surgery. Before clinical operation, the flexible artificial articulation model is used for realizing the model the most same as human's and the algorithm has been exploited for it. This system is considered of the following; limited sensing point, dynamic effect by compliance, time delay by fluid flow and so on. The system is composed with a pressure controller, a regulator for keeping air pressure, an airtight tank that can have distilled water packs, artificial articulation and a measuring system, and has controlled by the feedback of pressure sensor on the artificial articulation. Also the system has applied to Smith Predictor for time delay and the parameter estimation method for the most suitable system with both the experiment data and modeling. In this paper, the pressure error that is between an air pressure tank and an artificial articulation was measured so that the system could be presumed and then the controller had developed for performing State-Feedback. Finally, the controller with a real microprocessor has realized. The confidence of system can be proved by applying this control algorithm to an artificial articulation experiment material.

  • PDF

시간 지연을 갖는 2차 시스템 모델링 기법을 이용한 외란 관측기 설계 (Design of a Disturbance Observer Using a Second-Order System Plus Dead Time Modeling Technique)

  • 정구종;손영익
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.187-192
    • /
    • 2009
  • This paper presents a method for designing a robust controller that alleviates disturbance effects and compensates performance degradation owing to the time-delay. Disturbance observer(DOB) approach as a tool of robust control has been widely employed in industry. However, since the Pade approximation of time-delay makes the plant non-minimum phase, the classical DOB cannot be applied directly to the system with time-delay. By using a new DOB structure for non-minimum phase systems together with the Smith Predictor, we propose a new controller for reducing the both effects of disturbance and time-delay. Moreover, the closed-loop system can be made robust against uncertain time-delay with the help of a Pill controller tuning method that is based on a second-order plus dead time modeling technique.

구조적 불확실성을 갖는 비최소위상계의 강인한 제어기 설계 (Design of a robust controller for nonminimum phase system with structured uncertainty)

  • 김신구;서광식;김영철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.422-425
    • /
    • 1997
  • We consider the robust control problem for nonminimum phase(NMP) systems with parametric uncertainty which appear often in aircraft and missile control. First, a new method that makes such an uncertain NMP system to be factored as a interval minimum phase(MP) transfer function and a time delay term in the Pade approximation form has been presented. The controller to be proposed consists of a compensator $C_{Q}$(s) with Smith predictor in the internal model control(IMC) structure, so that it can have good robustness and performance against the structured uncertainty and the time delay behaviour due to NMP plant the $C_{Q}$(s) is designed on the MP model by using QFT. The stability and performance of overall system has been evaluated by the generalized Kharitonov theorem.rem.

  • PDF

Robust Nonlinear Control of Air-to-Fuel Ratio in Spark Ignition Engines

  • Myoungho Sunwoo;Paljoo Yoon;Park, Seungbum;Lee, Wootaik
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.699-708
    • /
    • 2001
  • This paper presents a new approach to the AFR (Air-to-Fuel Ratio) control problem, which is based on the wide-band oxygen sensor output. The dedicated nonlinear controller is based on the feedback lineaization technique. It is well known that the feedback linearizing control technique requires an exact model of the plant for the cancellation of plant nonlinearities. A sliding mode control scheme is applied which can effectively compensate the modeling uncertainties. The measurement time delay of an oxygen sensor limits the gain of the feedback controller. Hence, time delay compensation procedure is necessary for the improvement of control performance. The Smith predictor is adopted to compensate the effects of time delay. The simulation and experimental results show that the proposed controllers can effectively reduce the transient peaks of AFR in spite of fast tip-in and tip-out maneuvers of the throttle.

  • PDF

근사화된 2계 모델을 이용한 시간지연을 갖는 제어시스템의 성능개선 (Improved Performance of the Time-Delay Systems Using the Approximated End-Order Plus Dead Time Model)

  • 이규용;양승현;허명준;이석원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.518-520
    • /
    • 1999
  • The practical control problems for the time-delay system is considered. The delay-free characteristics of the Smith Predictor is available only when both the process and it's model are exactly matched. So it does not used widely in practical industrial processes. In this paper, using the 2nd-order plus deadtime model in place of the plant model of the Smith predictor, the proposed controller shows the improved performance in case of the very long time delay. And the range of integral constant of the PI controller is also proposed.

  • PDF

근사화된 2계 모델을 이용한 시간지연 시스템의 제어기 설계 (Design of the Controllers for Time-Delay Systems Using the Approximated 2nd-Order Model with Dead-Time)

  • 김종훈;박종식;양승현;이석원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2164-2166
    • /
    • 2002
  • This paper present a controller design scheme for time-delay system. The Smith Predictor has been proposed to solve the problem of time-delay. But this structure has a condition that parameters of plant and model have to be matched accurately. Because of this condition, it is not applied broadly in practical industrial process field. In this paper, the 2nd-order model with dead-time is used as plant model of the Smith Predictor and a main controller is designed by using the effect of mismatch between plant and model.

  • PDF