• Title/Summary/Keyword: Smart wristband

Search Result 7, Processing Time 0.023 seconds

Do Wearable Devices Change Behavior? A Study of Smart Fitness Trackers

  • Wan, Lili;Zhang, Chao
    • The Journal of Information Systems
    • /
    • v.29 no.1
    • /
    • pp.201-224
    • /
    • 2020
  • Purpose The study focuses on the physical activity behavior change effect of smart wristband, which is the most popular type of fitness tracker nowadays. The purpose of the research is to investigate how people's workout behavior may change after wearing a smart band and examine what kind of role persuasive design plays in behavior change. Design/Methodology/Approach This research employed an experimental study to examine whether the user's workout behaviors changed after using wristband from the "Behavior Wizard" perspective. A representative smart wristband from a major vendor was selected as the objects of experimental study. In the experiment, by comparing users' workout behavior before and after using the wristband, behavior changes of all the experiment participants were classified into one of the 15 behavior change types. Users perceived persuasive design characteristics were measured and group differences were tested among different behavior change groups. Findings This research found that nearly half of the participants changed their workout behavior while half retained their workout status or no exercise status. Half of the participants who did not do exercise in their spare time started walking in the experiment. Results also showed that participants who started working out perceived higher levels of persuasive design devised into the smart band than participants who preserved no exercise status, except for facilitation and reward strategies. Participants who retained workout and those who increased workout frequency perceived no difference in smart band persuasive design.

Factors influencing on smart health

  • Kim, Mincheol;Chen, Li;Park, Sangwon
    • The Journal of Industrial Distribution & Business
    • /
    • v.10 no.2
    • /
    • pp.17-23
    • /
    • 2019
  • Purpose - This study aims to clarify the impact of smart health gadgets (specfically, smart watches/sports wristbands) on promoting healthy behavior. It also aims to understand the use and characteristics of the devices, to explore the relationship between device factors and factors that affect healthy behavior, and to discuss the development of health promotion. Research, design, data, and methodology - Smart device users were investigated through a random sampling method of 185 respondents, including all ages and all levels of occupation, education, and income. The SmartPLS 3.0 software enabled the path analysis and the descriptive statistical analysis; the theoretical model was evaluated for the parameter analysis. Results - The size and path of each factor impacting health promoting behavior were ascertained. The objective factors that attract users to the smart wristband were investigated as well as the methods by which the device and the HPM are bound to each other and the correlation factors to seek out the closest relationship. Conclusions - According to the analysis, the real-time smart watch/sports wristband exerts a positive impact on one's health promoting behavior. Health awareness is increasingly promoted in the process of using the device, and the impact of health awareness and self-efficacy effects on healthy behavior is considerable.

Smart Wrist Band Considering Wrist Skin Curvature Variation for Real-Time Hand Gesture Recognition (실시간 손 제스처 인식을 위하여 손목 피부 표면의 높낮이 변화를 고려한 스마트 손목 밴드)

  • Yun Kang;Joono Cheong
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.18-28
    • /
    • 2023
  • This study introduces a smart wrist band system with pressure measurements using wrist skin curvature variation due to finger motion. It is easy to wear and take off without pre-adaptation or surgery to use. By analyzing the depth variation of wrist skin curvature during each finger motion, we elaborated the most suitable location of each Force Sensitive Resistor (FSR) to be attached in the wristband with anatomical consideration. A 3D depth camera was used to investigate distinctive wrist locations, responsible for the anatomically de-coupled thumb, index, and middle finger, where the variations of wrist skin curvature appear independently. Then sensors within the wristband were attached correspondingly to measure the pressure change of those points and eventually the finger motion. The smart wrist band was validated for its practicality through two demonstrative applications, i.e., one for a real-time control of prosthetic robot hands and the other for natural human-computer interfacing. And hopefully other futuristic human-related applications would be benefited from the proposed smart wrist band system.

Automatic Detection of Sleep Stages based on Accelerometer Signals from a Wristband

  • Yeo, Minsoo;Koo, Yong Seo;Park, Cheolsoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2017
  • In this paper, we suggest an automated sleep scoring method using machine learning algorithms on accelerometer data from a wristband device. For an experiment, 36 subjects slept for about eight hours while polysomnography (PSG) data and accelerometer data were simultaneously recorded. After the experiments, the recorded signals from the subjects were preprocessed, and significant features for sleep stages were extracted. The extracted features were classified into each sleep stage using five machine learning algorithms. For validation of our approach, the obtained results were compared with PSG scoring results evaluated by sleep clinicians. Both accuracy and specificity yielded over 90 percent, and sensitivity was between 50 and 80 percent. In order to investigate the relevance between features and PSG scoring results, information gains were calculated. As a result, the features that had the lowest and highest information gain were skewness and band energy, respectively. In conclusion, the sleep stages were classified using the top 10 significant features with high information gain.

Impact of the Physical Characteristics of Smart Wristbands and Smartwatches on Perceived Functional, Aesthetic, And Symbolic Values (스마트팔찌와 스마트워치의 물리적 특성이 지각된 기능적, 심미적, 상징적 가치에 미치는 영향)

  • Soo In Shim;Heejeong Yu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.525-532
    • /
    • 2024
  • This study explores the impact of physical characteristics (e.g., shape, color, material, size, weight, technical features) of smart wristbands and smartwatches on consumers' perceived functional, aesthetic, and symbolic values using an extended technology acceptance model. An online survey was conducted with adult residents of the United States who had experience using smart wristbands or smartwatches. Participants were asked about various physical characteristics of products they had used in the past year or were currently using, and their evaluations of these characteristics. The results revealed that the shape of the front display shape significantly influenced symbolic value, with circle shape and square shpae showing significantly higher symbolic value than rectangle shape. Wristband materials also had a significant impact on symbolic value, with metal and leather showing higher symbolic value among various materials. Additionally, an increase in product size was associated with higher symbolic value. Moreover, certain technical features such as activity tracker, alarm clock, and distance tracking influenced perceived functional value, while functions like time display, GPS, and email influenced perceived aesthetic value. Pedometer, GPS, and email were found to enhance perceived symbolic value. These findings provide valuable insights into consumer preferences for smart wristbands and smartwatches, serving as valuable information for product improvement and new product development.

Arduino-based Heart Rate Device for Smart Healthcare (스마트 헬스케어를 위한 아두이노 기반의 심박 측정기 제작)

  • Shin, Chae-lynn;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.104-105
    • /
    • 2021
  • Along with the rapid development of ICT, health management is continuing based on various smart healthcare devices in an aging society and non-face-to-face era caused by COVID-19. In this paper, a heart rate monitor was manufactured using the DF Robot SEN0203 heart rate sensor based on Arduino so that you can check your health and maintain a healthy life by measuring the heart rate per minute in real time to support personalized health management. The device manufactured through this thesis can be used in various ways, such as a wristband or a smart watch.

  • PDF

Private Blockchain and Biometric Authentication-based Chronic Disease Management Telemedicine System for Smart Healthcare (스마트 헬스케어를 위한 프라이빗 블록체인과 생체인증기반의 만성질환관리 원격의료시스템)

  • Young-Ae Han;Hyeok Kang;Keun-Ho Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • As the number of people with chronic diseases increases due to an aging society, it is urgent to prevent and manage their diseases. Although biometric authentication methods and Telemedicine Systems have been introduced to solve these problems, it is difficult to solve the security problem of medical information and personal authentication. Since smart healthcare includes personal medical information of subjects, the security of personal information is the most important field. Therefore, in this paper, we tried to propose a Telemedicine System using a smart wearable device ECG in the form of a wristband and face personal authentication in a private blockchain environment. This system targets various medical personnel and patients with chronic diseases in all regions, and uses a private blockchain that can increase data integrity and transparency, ECG and face authentication that are difficult to forge and alter and have high personal identification to provide a system with high security and reliability. composed. Through this, it is intended to contribute to increasing the efficiency of chronic disease management by focusing on disease prevention and health management for patients with chronic diseases at home.