Abstract
In this paper, we suggest an automated sleep scoring method using machine learning algorithms on accelerometer data from a wristband device. For an experiment, 36 subjects slept for about eight hours while polysomnography (PSG) data and accelerometer data were simultaneously recorded. After the experiments, the recorded signals from the subjects were preprocessed, and significant features for sleep stages were extracted. The extracted features were classified into each sleep stage using five machine learning algorithms. For validation of our approach, the obtained results were compared with PSG scoring results evaluated by sleep clinicians. Both accuracy and specificity yielded over 90 percent, and sensitivity was between 50 and 80 percent. In order to investigate the relevance between features and PSG scoring results, information gains were calculated. As a result, the features that had the lowest and highest information gain were skewness and band energy, respectively. In conclusion, the sleep stages were classified using the top 10 significant features with high information gain.