• Title/Summary/Keyword: Smart traffic

Search Result 590, Processing Time 0.104 seconds

A Study on Counting Measurement of Cultural Infrastructure Visitors: Focused on the Wireless Signal-Based Measurement (무선신호기반 측정방식을 활용한 문화기반시설 이용자 현황 측정에 관한 연구)

  • Kim, Ji-Hak;Park, Geun-Hwa
    • Korean Association of Arts Management
    • /
    • no.59
    • /
    • pp.73-99
    • /
    • 2021
  • Free admission policies have been gradually extended for the public to use cultural facilities free of charge, which lowered the barriers to use those facilities and has a great effect on increasing visitor demands. However, the annual number of visitors which is open to the public isn't quite accurate and varies from institution to institution, which means just a head count. Especially people counter overestimates the number of visitors because it counts visitors in duplicate. Therefore, the purpose of this study is to prepare effective way of grasping the number of visitors using cultural infrastructure. First, comparable number of visitors should be measured by defining the notion of visitor clearly, which has been measured vaguely. Secondly, the problem of duplicate count, which is considered the most problematic, should be solved. Thirdly, the various analysis of visitor behavior should be conducted to provide a high-quality service. To work out the problems above, new measurement will be presented here. This study suggests a state-of-the-art wireless signal-based measurement that could eliminate the duplicate data by collecting MAC address -smart device's distinct signal value. And it also could analyze diverse visitor behaviors by understanding a flow of visitor traffic, duration of stay and revisitation. I would like to examine the possibility and effectiveness of this new measurement by testing it.

Evaluation of Performance and Maintenance Cost for Roadside's Particulate Matter Reduction Devices Using Smart Green Infrastructure Technology (스마트 그린인프라 기술을 활용한 도로변 미세먼지 저감장치의 성능 및 유지·관리 비용 평가)

  • Song, Kyu-Sung;Seok, Young-Sun;Yim, Hyo-Sook;Chon, Jin-Hyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.4
    • /
    • pp.15-31
    • /
    • 2022
  • The Green Purification Unit System (GPUS) is a green infrastructure facility applicable to the roadside to reduce particulate matter from road traffic. This study introduces two types of GPUS (type1 and type2) and assesses the performance and maintenance costs of each of them. The GPUS's performance analysis used the data collected in November 2021 after the installation of the GPUS type1 and type2 at the study site in Suwon. The changes in the particulate matter concentration near the GPUS were measured. The maintenance cost of GPUS type1 and type2 was assessed by calculating the initial installation cost and the management and repair cost after installation. The results of the performance analysis showed that the GPUS type1, which was manufactured by combining plants and electric dust collectors, had a superior particulate matter reduction performance. In particular, type1 produced a greater effect of particulate matter reduction in the time with a high concentration (50㎍/m3 or higher) of particulate matter due to the operation of electric dust collectors. GPUS type2, which was designed in the form of a plant wall without applying an electric dust collector, showed lower reduction performance than type1 but showed sufficiently improved performance compared to the existing band green area. Meanwhile, the GPUS type1 had three times higher costs for the initial installation than GPUS type2. In terms of costs for managing and repairing, it was evaluated that type1 would be slightly more costly than type2. Finally, this study discussed the applicability of two types of GPUS based on the result of the analysis of their particulate matter performance and maintenance cost at the same time. Since GPUS type2 has a cheaper cost than type1, it could be more economical. However, in the area suffering a high concentration of particulate matter, GPUS type1 would be more effective than type2. Therefore, the choice of GPUS types should rely on the status of particulate matter concentration in the area where GPUS is being installed.

Dynamic Channel Management Scheme for Device-to-device Communication in Next Generation Downlink Cellular Networks (차세대 하향링크 셀룰러 네트워크에서 단말 간 직접 통신을 위한 유동적 채널관리 방법)

  • Se-Jin Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Recently, the technology of device-to-device(D2D) communication has been receiving big attention to improve the system performance since the amount of high quality/large capacity data traffic from smart phones and various devices of Internet of Things increase rapidly in 5G/6G based next generation cellular networks. However, even though the system performance of macro cells increase by reusing the frequency, the performance of macro user equipments(MUEs) decrease because of the strong interference from D2D user equipments(DUEs). Therefore, this paper proposes a dynamic channel management(DCM) scheme for DUEs to guarantee the performance of MUEs as the number of DUEs increases in next generation downlink cellular networks. In the proposed D2D DCM scheme, macro base stations dynamically assign subchannels to DUEs based on the interference information and signal to interference and noise ratio(SINR) of MUEs. Simulation results show that the proposed D2D DCM scheme outperforms other schemes in terms of the mean MUE capacity as the threshold of the SINR of MUEs incareases.

Predicting Carbon Dioxide Emissions of Incoming Traffic Flow at Signalized Intersections by Using Image Detector Data (영상검지자료를 활용한 신호교차로 접근차량의 탄소배출량 추정)

  • Taekyung Han;Joonho Ko;Daejin Kim;Jonghan Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.115-131
    • /
    • 2022
  • Carbon dioxide (CO2) emissions from the transportation sector in South Korea accounts for 16.5% of all CO2 emissions, and road transportation accounts for 96.5% of this sector's emissions in South Korea. Hence, constant research is being carried out on methods to reduce CO2 emissions from this sector. With the emerging use of smart crossings, attempts to monitor individual vehicles are increasing. Moreover, the potential commercial deployment of autonomous vehicles increases the possibility of obtaining individual vehicle data. As such, CO2 emission research was conducted at five signalized intersections in the Gangnam District, Seoul, using data such as vehicle type, speed, acceleration, etc., obtained from image detectors located at each intersection. The collected data were then applied to the MOtor Vehicle Emission Simulator (MOVES)-Matrix model-which was developed to obtain second-by-second vehicle activity data and analyze daily CO2 emissions from the studied intersections. After analyzing two large and three small intersections, the results indicated that 3.1 metric tons of CO2 were emitted per day at each intersection. This study reveals a new possibility of analyzing CO2 emissions using actual individual vehicle data using an improved analysis model. This study also emphasizes the importance of more accurate CO2 emission analyses.

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.1-8
    • /
    • 2023
  • If there is a defect in the wheel bearing, which is a major part of the car, it can cause problems such as traffic accidents. In order to solve this problem, big data is collected and monitoring is conducted to provide early information on the presence or absence of wheel bearing failure and type of failure through predictive diagnosis and management technology. System development is needed. In this paper, to implement such an intelligent wheel hub bearing maintenance system, we develop an embedded system equipped with sensors for monitoring reliability and soundness and algorithms for predictive diagnosis. The algorithm used acquires vibration signals from acceleration sensors installed in wheel bearings and can predict and diagnose failures through big data technology through signal processing techniques, fault frequency analysis, and health characteristic parameter definition. The implemented algorithm applies a stable signal extraction algorithm that can minimize vibration frequency components and maximize vibration components occurring in wheel bearings. In noise removal using a filter, an artificial intelligence-based soundness extraction algorithm is applied, and FFT is applied. The fault frequency was analyzed and the fault was diagnosed by extracting fault characteristic factors. The performance target of this system was over 12,800 ODR, and the target was met through test results.

Analysis of Driving and Environmental Impacts by Providing Warning Information in C-ITS Vehicles Using PVD (PVD를 활용한 C-ITS 차량 내 경고정보 제공에 따른 주행 및 환경영향 분석)

  • Yoonmi Kim;Ho Seon Kim;Kyeong-Pyo Kang;Seoung Bum Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.224-239
    • /
    • 2023
  • C-ITS (Cooperative-Intelligent Transportation System) refers to user safety-oriented technology and systems that provide forward traffic situation information based on a two-way wireless communication technology between vehicles or between vehicles and infrastructure. Since the Daejeon-Sejong pilot project in 2016, the C-ITS infrastructure has been installed at various locations to provide C-ITS safety services through highway and local government demonstration projects. In this study, a methodology was developed to verify the effectiveness of the warning information using individual vehicle data collected through the Gwangju Metropolitan City C-ITS demonstration project. The analysis of the effectiveness was largely divided into driving behavior impact analysis and environmental analysis. Compliance analysis and driving safety evaluation were performed for the driving impact analysis. In addition, to supplement the inadequate collection of Probe Vehicle Data (PVD) collected during the C-ITS demonstration project, Digital Tacho Graph ( DTG ) data was additionally collected and used for effect analysis. The results of the compliance analysis showed that drivers displayed reduced driving behavior in response to warning information based on a sufficient number of valid samples. Also, the results of calculating and analyzing driving safety indicators, such as jerk and acceleration noise, revealed that driving safety was improved due to the provision of warning information.

Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process

  • Qi-Ang Wang;Hao-Bo Wang;Zhan-Guo Ma;Yi-Qing Ni;Zhi-Jun Liu;Jian Jiang;Rui Sun;Hao-Wei Zhu
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.267-279
    • /
    • 2023
  • Data modelling and interpretation for structural health monitoring (SHM) field data are critical for evaluating structural performance and quantifying the vulnerability of infrastructure systems. In order to improve the data modelling accuracy, and extend the application range from data regression analysis to out-of-sample forecasting analysis, an improved most likely heteroscedastic Gaussian process (iMLHGP) methodology is proposed in this study by the incorporation of the outof-sample forecasting algorithm. The proposed iMLHGP method overcomes this limitation of constant variance of Gaussian process (GP), and can be used for estimating non-stationary typhoon-induced response statistics with high volatility. The first attempt at performing data regression and forecasting analysis on structural responses using the proposed iMLHGP method has been presented by applying it to real-world filed SHM data from an instrumented cable-stay bridge during typhoon events. Uncertainty quantification and correlation analysis were also carried out to investigate the influence of typhoons on bridge strain data. Results show that the iMLHGP method has high accuracy in both regression and out-of-sample forecasting. The iMLHGP framework takes both data heteroscedasticity and accurate analytical processing of noise variance (replace with a point estimation on the most likely value) into account to avoid the intensive computational effort. According to uncertainty quantification and correlation analysis results, the uncertainties of strain measurements are affected by both traffic and wind speed. The overall change of bridge strain is affected by temperature, and the local fluctuation is greatly affected by wind speed in typhoon conditions.

Optimizing Clustering and Predictive Modelling for 3-D Road Network Analysis Using Explainable AI

  • Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.30-40
    • /
    • 2024
  • Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.

A Methodology of Multimodal Public Transportation Network Building and Path Searching Using Transportation Card Data (교통카드 기반자료를 활용한 복합대중교통망 구축 및 경로탐색 방안 연구)

  • Cheon, Seung-Hoon;Shin, Seong-Il;Lee, Young-Ihn;Lee, Chang-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.233-243
    • /
    • 2008
  • Recognition for the importance and roles of public transportation is increasing because of traffic problems in many cities. In spite of this paradigm change, previous researches related with public transportation trip assignment have limits in some aspects. Especially, in case of multimodal public transportation networks, many characters should be considered such as transfers. operational time schedules, waiting time and travel cost. After metropolitan integrated transfer discount system was carried out, transfer trips are increasing among traffic modes and this takes the variation of users' route choices. Moreover, the advent of high-technology public transportation card called smart card, public transportation users' travel information can be recorded automatically and this gives many researchers new analytical methodology for multimodal public transportation networks. In this paper, it is suggested that the methodology for establishment of brand new multimodal public transportation networks based on computer programming methods using transportation card data. First, we propose the building method of integrated transportation networks based on bus and urban railroad stations in order to make full use of travel information from transportation card data. Second, it is offered how to connect the broken transfer links by computer-based programming techniques. This is very helpful to solve the transfer problems that existing transportation networks have. Lastly, we give the methodology for users' paths finding and network establishment among multi-modes in multimodal public transportation networks. By using proposed methodology in this research, it becomes easy to build multimodal public transportation networks with existing bus and urban railroad station coordinates. Also, without extra works including transfer links connection, it is possible to make large-scaled multimodal public transportation networks. In the end, this study can contribute to solve users' paths finding problem among multi-modes which is regarded as an unsolved issue in existing transportation networks.

A study on the impact and activation plan of unmanned aerial vehicle service (무인항공기 서비스 영향성과 활성화 방안 연구)

  • Yoo, Soonduck
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.1-7
    • /
    • 2022
  • The purpose of this study is to discuss the impact of unmanned aerial vehicle service and how to activate it. The discussion on the impact of the introduction of the unmanned aerial vehicle service was examined in terms of economic, environmental, and social acceptance, and a plan to revitalize the industry was presented. In terms of economic impact, if transportation services are increased using unmanned aerial vehicles in the future, road-based transportation cargo may decrease and road movement speed may increase due to reduced road congestion. This can have a positive effect on the increase in the value of land or real estate assets, and it also provides an impact on smart city design. In terms of environmental impact, unmanned aerial vehicles (UAVs) generally move through electricity, so they emit less exhaust gas compared to other existing devices, such as vehicles and railroads, and thus have less environmental impact. However, noise can have a negative impact on the habitat in the presence of wild animals along their migration routes. In terms of social acceptability of unmanned aerial vehicles (UAV) technology, areas that are declining due to the emergence of new services may appear, and at the same time, organizations that create profits may appear, causing conflicts between industries. Therefore, it is essential to form a social consensus on the acceptance of emerging industries. The government should come up with various countermeasures to minimize the negative impact that reflects the characteristics of the unmanned aerial vehicle use service. Just as various systems such as road signs were introduced so that vehicles can be operated on the ground to secure air routes in the mid- to long-term for revitalization of unmanned-based industries, development and establishment of services that should be introduced and applied prior to constructing air routes I need this. In addition, the design and implementation of information collection and operation plans for unmanned air traffic management in Korea and a plan to secure a control system for each region should also be made. This study can contribute to providing ideas for mid- to long-term research on new areas with the development of the unmanned aerial vehicle industry.